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We propose an automatic method for attributing manuscript pages to scribes. 
The system uses digital images as published by libraries. The attribution 
process involves extracting from each query page approximately letter-
size components. This is done by means of binarization (ink-background 
separation), connected component labelling, and further segmentation, 
guided by the estimated typical stroke width. Components are extracted in 
the same way from  the  pages of known scribal origin. This allows us 
to assign a scribe to each query component by means of nearest-neighbour 
classification. Distance (dissimilarity) between components is modelled by 
simple features capturing the distribution of ink in the bounding box 
defined by the component, together with Euclidean distance. The set of 
component-level scribe attributions, which typically includes hundreds 
of components for a page, is then used to predict the page scribe by means 
of a voting procedure. The scribe who receives the largest number of votes 
from the 120 strongest component attributions is proposed as its scribe. 
The scribe attribution process allows the argument behind an attribution 
to be visualized for a human reader. The writing components of the query 
page are exhibited along with the matching  components of the known 
pages. This report is thus open to inspection and analysis using the 
methods and intuitions of traditional palaeography. The present system was 
evaluated on a data set covering 46 medieval scribes, writing in Carolingian 
minuscule, Bastarda, and a few other scripts. The system  achieved a 
mean top-1 accuracy of 98.3% as regards the first scribe proposed for each 
page, when the labelled data comprised one randomly selected page from 
each scribe and nine unseen pages for each scribe were to be attributed in 
the validation procedure. The experiment was repeated 50 times to even 
out random variation effects.
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1 Motivation and purpose
In 1970, workers involved in the restoration of a chapel in Speyer found a reliquary 

containing a very old manuscript leaf. Experts called in to examine the item were—

we can imagine—excited to find writing in gold and silver ink on purple vellum using 

a somewhat odd alphabet. These details must soon have led their inquiries in the 

direction of the evangeliary known as Codex Argenteus, which, after dramatic travels, 

had ended up in Uppsala. Philologists could later definitely verify that the Speyer leaf 

was one of those missing from the codex. There are a number of circumstances, e.g. 

the Gothic language and alphabet, the extraordinary design, and the textual content, 

which strongly speak in favour of the conclusion that the solitary leaf belongs to the 

evangeliary.

If we are interested in finding the manuscript home of an odd medieval fragment 

of a more ordinary kind, say a piece of parchment with Latin text written in some 

cursive script typical of the 15th century, we face a difficult problem. Just to see 

that two pages are from the same codex, scribe, or cultural context, and to justify 

such a conclusion, requires the expertise of a palaeographer. Browsing thousands 

of 15th century manuscripts, one-by-one, library-by-library, to compare them with 

an enigmatic leaf, would necessitate enormous efforts, even if the most efficient of 

philologists would contribute their competence to the project.

Today many libraries are in the process of digitizing their historical collections. 

This gives us new opportunities to compare manuscripts and to find new connections 

among them. A modern expert trying to place an odd medieval page in its context 

of production would most likely use a computer, at least for viewing digitized 

manuscripts. This article will be concerned with using computational resources to 

compare parts of manuscripts. To be more specific, it will focus on automatic scribe 

attribution.

The main purpose of the system described here is to predict, by means of 

automatic analysis of digital images, which scribe has produced the writing on a 

manuscript sample. This is essentially a classification problem. In this context, each 

scribe (or we could say class) is identified as the hand behind a set of given manuscript 
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images. The system has access to a set of writing examples which constitutes a 

database of known scribes.

A secondary purpose of the present system is to produce arguments for scribe 

attributions which are comprehensible to a traditional palaeographer or even an 

ordinary human reader. This means that the classification procedure must follow 

a series of steps from which we can derive a presentation of the evidence which is 

compatible with this purpose. The central idea is that we can justify scribe attributions 

by highlighting similarities between the letters of the manuscript under examination 

and letters produced by scribes from the database. The system is consequently in the 

vein of “digital palaeography” (Ciula 2005) in its wish to contribute to methods in 

manuscript analysis which are quantitative and amenable to objective validation and, 

at the same time, support philologically meaningful reasoning and visualization.

In connection with this study, we have compiled and published open-source a 

data set comprising 46 medieval scribes writing in book hand scripts (see Appendix 

for details).

2 Previous studies
Knowing who has produced a manuscript is of obvious relevance in disciplines 

like history, literary studies, and philology. In traditional palaeography (as defined 

in e.g. Aussems and Brink 2009), scribe attribution has to a large extent relied on 

qualitative analysis. Fundamental properties include the morphology of the script 

and the execution of the writing, where ductus, speed, and care are three aspects. 

Examination of what is called the “graphical chain” (Stutzmann 2016) focuses on how 

characters appear in the context of writing, e.g. on how allographs are distributed, 

and how scribes connect letters. Linguistic features, such as spelling, including the 

use of abbreviations, are also relevant as qualitative evidence for scribe identification. 

Research in palaeography has increasingly come to rely on more formalized criteria 

and quantitative evidence, such as letter widths, heights, distances, and angles. This 

development of the field has been described as a move from an “art of seeing” to an 

“art of measurement” (see Stansbury 2009 for a discussion). Systematic and extensive 

measurement of script features is hardly practically possible without the use of 
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digital tools. This means that research on quantitative methods has clustered in a 

discipline of “digital palaeography” (Ciula 2005). In addition to palaeography, there 

is also a more recent area of expertise concerned with modern handwriting, which 

is strongly associated with forensic sciences. It finds its main application in criminal 

and civil cases, where the origin and authenticity of documents are to be verified. 

Forensic handwriting scholarship and palaeography have developed as two more or 

less independent academic fields.

The high costs of non-digital approaches to scribe attribution—or more 

commonly, “writer identification,” in technical contexts—have motivated researchers 

to study automatic scribe attribution for both historical and modern documents. The 

challenging nature of the problem from the point of view of image analysis has also 

stimulated academic attention. Computational research on modern handwriting 

overlaps with forensic science, whereas work on historical data belongs to the field 

of “digital palaeography.” Closely related problems which can also be assigned to 

this area are script classification (Stutzmann 2016; Cloppet et al. 2018), manuscript 

dating, and fragment rejoining (Wolf et al. 2010). They are of particular relevance for 

historical manuscripts and these tasks to a large extent face the same difficulties and 

have to use the same kinds of method as automatic scribe attribution.

Most scribe attribution systems for historical manuscripts are based on 

machine learning and make use of features which can be extracted independently 

of linguistically informed segmentation and labelling of the writing (Jain and 

Doerman 2014). Among such features we find, for instance, probability distributions 

for character fragment contours (Schomaker, Bulacu, and Franke 2004), character 

fragments as normalized bitmaps, distributions of the orientations of hinged edge 

fragments (Bulacu and Schomaker 2007), and distributions of stroke fragments 

(Tang, Wu, and Bu 2013). Another system (Brink 2011) used a “Quill” feature, which 

models the relation between the local width and direction of ink traces. He, Wiering, 

and Schomaker (2015), working in the same school, proposed features capturing the 

distribution of junctions (meetings of strokes). Mixing features relating to texture, 

shape, and curvature in writer attribution systems has led to improved results (Jain 
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and Doerman 2014). Feature engineering of this kind has been combined with 

machine learning techniques such as clustering for the generation of codebooks of 

recurring writing components, nearest-neighbour classification (Schomaker, Bulacu, 

and Franke 2004; Bulacu and Schomaker 2007; Brink 2011; Tang, Wu, and Bu 2013), 

and multi-layer perceptrons (De Stefano et al. 2011).

Feature models working in the fashions described above capture, on a document 

sample level, the distribution of image details much smaller than letters. This means 

that the models are difficult to visualize in terms comprehensible from a traditional 

palaeographic point of view. By contrast, Ciula (2005) and Dahllöf (2014) proposed 

systems for comparing scripts and scribes letter-by-letter by means of mathematical 

models of letter similarity. As both systems relied on manual extraction of letters, 

they did not provide fully automatic tools for manuscript classification. However, 

they do point in the direction of methods where “the traditional qualitative 

palaeographic paradigm can be strengthened and assisted by the creation of graphic 

models that are quantitative in nature,” to quote Ciula (2005). The current work 

aspires to implement these ideas in a fully automatic system.

Comparing the performance of scribe attribution systems is an intricate task, 

since different systems target different kinds of writing. Furthermore, evaluation 

scores for different systems are based on data with varying numbers of writers and 

different amounts of data available for each writer (Brink 2011). Modern data sets 

have typically been created in laboratory environments with standardized pens and 

writing supports. Medieval data on the other hand derive from physical manuscripts 

which have been created using writing supports, pens, and inks with varying 

properties. And the storage and use over the centuries have in most cases radically 

changed the appearance of the writing, or even damaged it. Additions of later writing 

are also common.

An important metric in validation of scribe attribution systems, and classification 

systems generally, is the top-1 accuracy score, which considers the highest-ranking 

prediction for each query item: It is the ratio between the number of true predictions 

and the total number of predictions. State-of-the-art systems for modern handwriting 
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reach higher performance scores than those reported for medieval data. For instance, 

He and Schomaker (2016) report a top-1 accuracy score of 93.2% for a data set with 

650 hands writing in English. Their overview quotes similar scores for modern Greek, 

Arabic, and Chinese writing.

In the ICDAR2017 Competition on Historical Document Writer Identification 

(Historical-WI) (Fiel et al. 2017), the participating systems reached top-1 accuracy 

scores between 47.8% and 76.4% for 720 writers. The data set is said to cover the 

13th to 20th century, but no details on the distribution of the documents over time 

are given.

In their work on medieval handwriting, Brink (2011) reported top-1 accuracy 

scores in the range 70%–92% for data sets comprising 10–18 scribes. Another 

approach (De Stefano et al. 2011), relying only on page layout features, with each 

writing sample consisting of four rows of writing, achieved 92% top-1 accuracy for 

12 scribes, all producing Carolingian minuscule writing.

3 Scribe attribution procedure
When given a query example, the current system predicts a scribe selected from 

a set of individuals, each one defined by labelled manuscript data. The scribe 

attribution procedure relies on a sequence of processing steps involving two fairly 

simple classification modules. One of the advantages of this is that the process will 

use evidence in a way that is comprehensible for palaeographer with a traditional 

understanding of the task. This means that predictions are reached in a way that 

corresponds to an argument that can be visualized for the user. Another gain is that 

the system can be applied without a potentially time-consuming training step, as 

would typically be necessary when models based on machine-learning are used. The 

system exists and was evaluated in the form of a Java implementation.

The operation of the system is guided by a set of parameters. Experiments made 

during the development phase suggested that the parameter setting described below 

leads to a good performance. It is the one which was used in the evaluation reported 

below. The parameter values can arguably also be explained and justified from the 

point of view of an a priori understanding of Latin book hand scripts, even if the 
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values, admittedly, to some extent are arbitrary. In work with new data, the system 

invites retuning of the parameter settings.

3.1 Amount of labelled data and amount to be classified
In each application of the system, the labelled data are a set of images sampling a 

certain amount of writing for each scribe. This amount can be just a part of an image, 

one full image, or several images. Different sizes of the query units (to be attributed 

to a scribe) are also possible. In the experimental rounds of the evaluation reported 

below, one manuscript image was in all cases the size both of the labelled samples 

and of the query units. As will be described below, the labelled data were randomly 

selected from the manuscript data set, and the remaining (unseen by the system) 

images were used to generate queries in the evaluation procedure. The images of 

the data set are in the high-resolution state-of-the-art quality forms provided by the 

libraries and correspond to one page or one spread. (The data set is published open-

source, see below.)

3.2 Extraction of image components, mainly letters
The first processing steps applied to the manuscript files are cropping, which removes 

the image margins, and scaling. After that, the system will operate on “binarized” 

versions of the manuscript images. In these, the pixels only carry a binary value 

indicating writing foreground (ink) versus background (parchment/paper). This is 

a considerable reduction of the information content of the images, as colour and 

greyscale information will not be available in the further processing. The binarization 

is executed by means of a version of the commonly employed Otsu (1979) algorithm. 

Using binarization is a common practice in handwriting analysis (Brink 2011; Jain 

and Doerman 2014; He, Wiering, and Schomaker 2015).

The binarized representation allows the system to perform connected component 

labelling for the purpose of extracting connected regions of ink pixels. These regions, 

defined as sets of foreground pixels, will typically cover letters and letter sequences. 

Some of the regions are then further segmented into smaller pieces. The idea behind 

this is that the segments and a subset of the connected components will correspond 

to single letters and pairs of connected letters. These image elements will be referred 
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to as “components”, and they form the primary objects of scribe attribution in the 

current system. The segmentation process is guided by the estimated typical stroke 

width, WS for each manuscript image. The system estimates WS by determining 

the most common width of sequences of continuous horizontal foreground pixels 

separated by at least two pixels of background.

Six parameters expressed as products of a constant and WS constrain the 

segmentation process applied to the connected components. Vertical cuts are only 

proposed where the pixel column sum of ink is thinnest, but not thicker than, 1.0WS 

and not closer to another cut than 3.0WS. Segments between cuts are extracted if 

their width is between 3.0WS and 9.0WS and their height is in the same interval, i.e. 

[3.0WS, 9.0WS]. This parameter setting, i.e. the six real numbers, (1.0, 3.0, 3.0, 9.0, 

3.0, 9.0), represents a heuristic and pragmatic assumption about the relevant script 

types and is assumed to filter out non-letter connected components, while admitting 

components useful for the present purpose. Figure 1 shows an example. Note that 

the scheme excludes many instances of ⟨i⟩, which are narrower than 3.0WP. We guess 

Figure 1: Extraction of writing components. This example shows a region from page 
105 in Cod. Sang. 726 (hand csg0726B, here, from the St. Gallen Stiftsbibliothek). 
The page has been binarized and rectangles indicate which image components 
were extracted. Blue rectangles frame components which were produced directly 
by the connected component labelling, whereas the red ones were the result of 
further segmentation.
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that ⟨i⟩ components are too “anonymous” to be useful for scribe attribution. The 

point of using the writing-relative WS value in this fashion is to make the system less 

sensitive to image size and scale. If more than 500 components are retrieved for a 

scribe, only the 500 ones whose width is closest to the midpoint of the width interval 

(i.e. 6.0 ws ) are kept for the later steps of the attribution process.

3.3 Feature model and distance (dissimilarity) metric for 
component comparison
The shape of the image components is represented by a sequence of numeric 

measurements (features). In other words, they form coordinates in a feature 

space. This allows similarity between components to be modelled in such a way 

that distance corresponds to dissimilarity. The features, which are computed 

with reference to the minimal bounding box enclosing the foreground pixels, 

characterize the component in terms of the distribution of foreground (ink) 

pixels as captured by a grid of 8 × 8 equal subrectangles over the bounding box. 

This gives us 64 features, as illustrated by Figure 2. Each value is the ratio of the 

Figure 2: The grid corresponding to the features which capture the distribution of 
foreground (ink). It consists of 8 × 8 equal subrectangles defined in relation to the 
bounding box enclosing the image component (from Cod. Sang. 983, p. 69). Each 
value is the ratio of the number of foreground pixels to the subrectangle area. The 
feature vector would in this case look something like, showing the first eight and 
last eight values: (0.1, 0.5, 0.7, 0.5, 0.2, 0.1, 0.7, 0.3, …, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6, 0.3, 
0.0), when the image is “read” top-down and left-right.
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number of foreground pixels to the subrectangle area, i.e. belongs to the interval 

[0.0,1.0]. The concept of distance used is Euclidean distance (with the features given 

equal weight) computed by this formula (the generalized form of the Pythagorean 

theorem):    2

1
,


 n

i ji
distance I J I I . So, the distance 0 means that the model 

does not record any difference between two images, whereas 8 64=  is the maximal 

dissimilarity.

3.4 Scribe attribution for image components
Using the components extracted from the labelled manuscript images, the 

system predicts a scribe for each component extracted from a query page or 

spread by means of “nearest neighbour” classification. This means that each 

component is assumed to have been produced by the scribe behind the most 

similar (least distant) labelled component. Each prediction has a strength which 

is inversely related to the distance between the two components, i.e. the shorter 

the distance between the query component and the closest labelled component 

the better. So, for each query image a set of component-level scribe attributions 

is generated, and these attributions are at the same time ranked on a scale of 

strength.

3.5 Scribe attribution for manuscript samples (pages or spreads)
The second main module of the attribution process assigns a scribe to each query 

manuscript sample by means of a voting procedure. This is based on the arrangement 

of the component-level predictions in ascending order by the distance score, as 

described above. A scribe prediction for the query image is generated by voting in 

two steps: First, the (at most) five scribes who receive the largest number of votes 

from the top 120 component predictions (or all of them if their number is smaller 

than that) is determined. After that, the system repeats both the classification of 

image components and the voting with only the labelled components from these 

five scribes available, again with voting by the top 120 (or all) component predictions. 

Finally, the scribe who has received the largest number of votes is returned as the 

prediction for the query image.
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3.6 Visualizing scribe attribution arguments for a human reader
As the component-level predictions are based on the pairwise similarity of image 

components, they can be visualized for a human reader in a straightforward way. The 

example in Figure 3 shows the 56 best component hits for a query page based on 

the labelled manuscript data involved in a possible evaluation round (see Section 4). 

The system creates this overview in the form of an HTML page which can be viewed 

in any web browser. The scribe coded as csg0990B (see the Appendix for an overview 

of the scribes in the data set) is clearly getting the majority of the votes so far. The 

component pairs are arranged in tables, but logically they are only sequentially 

ranked. The examples which we exhibit here show the top 56 component predictions 

of the 120 component predictions used to reach a scribe attribution. In each cell, the 

component from the query example is placed to the left, and the matching labelled 

component to the right. The distance value (rounded to one decimal) appears 

below the two components. The foreground (ink according to the binarization) of 

Figure 3: Matched image components. Query components appear to the left and 
the labelled ones to the right in the cells. Page 325 in the csg0990B sequence was 
the one under scrutiny. Predictions conforming to the most common decision for 
the query image, which were true here, are placed in yellow cells and other ones 
appear with blue background. This outcome consequently strongly spoke in favour 
of the hypothesis that csg0990B is the scribe.
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the components is rendered in dark blue, whereas the rest of the bounding box 

(background and ink not belonging to the component) appears as in the original 

manuscript image. Predictions conforming to the most common decision for the 

query example, which can be true or false, are placed in yellow cells and other ones 

appear with blue background.

The example in Figure 3 shows a very clear outcome for the scribe coded as 

csg0990B (in real life: Elisabeth Schaigenwiler) of the St. Gallen codex Cod. Sang. 

990. Page 325 (the fourth) in the csg0990B sequence was queried against all the 

16th pages in the scribe sequences, which, in other words, provided the source for 

the labelled data. The system was specifically asked to generate an attribution based 

on this data configuration. In the evaluation, the labelled data in each round were 

randomly selected. The system has proposed matches involving the letters ⟨t⟩, ⟨e⟩, 

⟨a⟩, ⟨n⟩, ⟨m⟩, ⟨s⟩, and ⟨r⟩, along with four pairs of two-letter components, ⟨er⟩, ⟨or⟩, 

⟨en⟩, and ⟨er⟩. All matches connect graphematically equivalent components. Also 

note that the four erroneous scribe hits shown in the table point to csg0990A, which 

is a very similar Bastarda hand, responsible for another unit in the same codex. This 

scribe, whose name was Dorothea von Hertenstein, worked in the same scriptorium 

at the same time.

4 Performance evaluation
We evaluated the scribe attribution system proposed here by applying it to a data set 

comprising 46 scribes. As mentioned above, each prediction was based on one image 

of labelled data for each scribe and one image to be classified. We report the mean 

top-1 accuracy score and give an overview of which incorrect predictions were made.

4.1 Data set
Each of the 46 scribes was represented by 10 manuscript images in the evaluation 

data set. When it comes to medieval documents, in particular books, scribes can 

often only be identified through instances of their work. In the present data set, 

only few of the scribes are known by name. The scribes were selected from digitized 

manuscripts published by a number of websites: e-codices—Virtual Manuscript 

Library of Switzerland, ALVIN—Platform for digital collections and digitized cultural 
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heritage, and the national libraries of Denmark and Sweden. The terms of use for 

the digitized manuscripts allow that the images be used and distributed for research 

purposes. (See Appendix for details on the data set, which is included in the one we 

have published open-source under doi: https://doi.org/10.5281/zenodo.1202106.) 

The images provided by the libraries correspond to one manuscript page in most 

cases, but some codices are digitized one spread on each image. The set of scribes is 

the union of three different subsets: The first subset comprises 18 9th century scribes 

of Carolingian minuscule (language: Latin) taken from the collection of the St. Gallen 

Stiftsbibliothek, which is the library which has contributed the largest number of 

manuscripts to e-codices. The second subset is also selected from manuscripts 

belonging to the Stiftsbibliothek and contains the same number of 15th–16th 

century scribes using scripts classified as Bastarda (languages: Latin, Alemannic, and 

German). The third set is a collection of 10 Scandinavian 13th–15th century scribes 

(languages: Old Swedish and Old Norse). Scribes and image sequences for these were 

selected with the aim of finding continuous sequences of pages filled with fairly 

clean and well-preserved writing. In many images there are additions of later writing. 

As can be expected, the amount of writing in each image varies considerably. Let 

us venture to say that the pages are fairly typical for medieval book manuscripts as 

regards density and size for the writing and layout. The images were downloaded 

in their highest resolution version. The files, in JPEG or TIFF format, are between 

2MB and 90MB in size. The ground truth scribe attributions as well as information 

about scripts and dates were taken from statements published by the libraries and 

compiled from various palaeographical sources. (Details are given in the Appendix.) 

One disputed case will be discussed below.

During the development and tuning phase another, disjoint, set of pages from 

the 36 e-codices scribes had been used as data in experiments. The first 10 pages 

in the 36 Cod. Sang. page sequences defined in the Appendix (and included in the 

data set as published) were used during the development and tuning phase and 

the following 10 pages provided data for the final evaluation, e.g. pages 147–156 

and 157–166, respectively, for the second scribe of Cod. Sang. 186 (csg186B). The 

https://doi.org/10.5281/zenodo.1202106
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Scandinavian data had not at all been consulted during the system development 

phase. However, the data set as published contains 20 pages for each of these hands, 

but only the second half of these sequences were used in the evaluation.

4.2 Experimental design and results
We designed an experimental set-up to assess the performance of the system using 

the data set described above. This set-up corresponds to a scenario where images 

are compared one by one. In each experimental round, one image for each scribe 

was randomly selected to provide labelled data, i.e. labelled image components were 

extracted from these 46 images. The remaining 9 × 46 = 414 images, unseen by the 

system, were used for evaluation. Each experimental round consequently produced 

414 predictions, all based on the same labelled data. The experimental procedure 

was repeated 50 times in order to even out random variation effects.

The images were cropped in such a way that, if l is the smallest value of the 

image width, w, and height, h, the further processing was concerned with the image 

in the centred rectangle of size (w−0.05l) × (h−0.05l). Furthermore, each image was 

rescaled to be processed at a randomly chosen resolution ∈ {10, 11, 12} pixels/mm. 

The original resolutions of the images were estimated from images digitized with 

rulers on the pages or from codex size metadata. (The estimates are recorded with 

the published data set.) The rescaling—with few exceptions a downscaling—led to 

shorter processing times and was motivated by a wish to neutralize possible effects 

of the original resolution.

The 50 iterations of the experimental procedure of the evaluation required 

roughly 41 hours on a Windows laptop (processor: intel core i7-4600U @ 2.10 ghz, 

maximum heap for the Java Virtual Machine: 6.1GB). This corresponds to on average 

seven seconds for each image query. The current implementation of the system is an 

experimental one, which is far from optimized efficiency-wise.

This exercise produced 20358 true predictions (out of a total of 414 × 50). The 

system consequently reached a mean top-1 accuracy of 98.3%. We can also look at 

the scribe attributions for single image components: During the 50 rounds of the 

experimental procedure, roughly 9.6 million component attributions were made, 
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on average 464 for each page. For the first step classifications (with all labelled 

component data available), 4.2 million of these predictions were correct. This gives 

us 44.0% as the top-1 accuracy for the component-level scribe attribution.

The system allows us to retrieve information about which false predictions were 

made. This makes it possible to see which images and thereby which hands lead 

the system to make mistakes. The erroneous predictions are shown in Table 1. We 

can note that 33 of the 46 hands were attributed with 100% top-1 accuracy. The 

three most often misclassified hands were csg0186B, csg0586, and csg0576. They 

gave rise to 90, 59, and 51 errors, respectively, in the evaluation rounds (for 9 × 50 

attributions). In other words, the system only reached 80%−89% top-1 accuracy for 

these hands, whereas the overall mean top-1 accuracy was 98.3%.

Table 1: The errors produced in the 50 rounds of experimental evaluation. 9 × 46 × 50 
predictions were made, 98.3% of them were true. These are the remaining 342 
incorrect ones. The total number of errors for each hand is recorded here, as are 
the number of specific erroneous predictions.

Hand Errors Erroneous predictions

csg0186B 90 csg0926: 30, csg0089: 16, csg0186A: 11, csg0557: 9, csg0078: 

8, csg0861: 7, csg0053: 3, csg0569: 3, csg0902: 1, csg0562A: 1, 

csg0562B: 1

csg0586 59 csg0726B: 32, csg0990A: 13, csg0602: 8, uubC528: 4, 

csg0593: 1, csg0644: 1

csg0576 51 csg0077: 30, csg0088: 9, csg0078: 7, csg0053: 4, csg0089: 1

csg0562B 47 csg0053: 32, csg0557: 8, csg0562A: 5, csg0078: 2

csg0990A 34 csg0990B: 34

csg0112 26 csg0053: 25, csg0562A: 1

csg0186A 18 csg0569: 17, csg0088: 1

uubB68 9 csg0725: 8, csg0990A: 1

csg0726A 3 csg0726B: 3

csg0089 2 csg0562A: 1, csg0569: 1

csg0557 1 csg0926: 1

csg0562A 1 csg0053: 1

csg0565A 1 csg0077: 1
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5 Discussion
The evaluation of the system showed that the system performed well on a data set 

containing both completely new manuscripts (the Scandinavian ones) and unseen 

images from the same codicological units as those consulted during the tuning of 

the system. As studies in medieval scribe attribution are few, and the data sets used 

in evaluations have had different properties, it is not possible to make a fully-fledged 

comparison of the present system with previous ones, as regards their performance 

as classifiers in scribe attribution. That said, we can however see that it delivered a 

mean accuracy score which is higher than the numbers which have been reported for 

previous experiments with medieval data, which covered smaller sets of scribes. We 

will also argue below that the errors of the system to a high extent are “reasonable”. 

An innovative component of the present system is the module that presents evidence 

for attributions in a way that invites qualitative inspection of the kind promoted by 

traditional palaeography.

5.1 Limitations
Some challenges for the present system should be mentioned: A basic difficulty is 

that manuscripts on which the binarization module would perform poorly could be 

difficult to process in the intended way. Defective binarization would interfere with 

the extraction of writing components. This situation could, for instance, arise for 

manuscript images with uneven contrast between background and ink, in particular 

in combination with damages. Low resolution would be a related kind of problem. As 

these are common and serious troubles for all work with historical manuscripts, they 

can hardly be seen as indicating specific flaws of the present approach.

Another possible obstacle is that densely connected forms of writing could make 

it difficult for the component extraction module to find a sufficient number of useful 

segmentable components. Furthermore, the system is sensitive to rotation of the 

writing in relation to the digital images. The text lines in the images which have been 

studied here are roughly parallel with the x-axis. In the evaluation of the system, 

rotation was consequently not a serious problem. However, some mechanism for 

correcting image orientation would make the system more robust.
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Systems of this kind face many challenges on the path to becoming really 

useful tools for historians and philologists. One of the most important questions 

is what happens when the data sets become much larger. The “nearest neighbour” 

classification is an instance of linear search. The time it takes is proportional to 

the size of the set of labelled components. This means that some more efficient 

component classification method will be needed as the data sets grow. Given that 

the labelled data comprise hundreds of components for each scribe (and each page), 

it would be possible to estimate which shapes are most strongly distinctive for one 

or a few scribes, and which ones are more “commonplace”. After that, only the more 

distinctive shapes would be used as labelled data in the component classification 

step. This would reduce the time needed for the “nearest neighbour” step and could 

improve the ability of the system to deal with a larger number of scribes.

The decision to use a size-neutral feature model was guided by a wish to focus 

on the shape of letters rather than their actual size. (See the discussion of Figure 5 

below for an illustrative example.) This idea is based on the assumption that the 

personal characteristics of a scribe are likely to be preserved independently of the 

actual size of the writing. Admittedly, this is a complicated issue, since the size of 

the writing is likely to have a reciprocal impact on the execution of letters, both as a 

matter of design intentions and of motoric conditions influencing their shape.

5.2 A case subject to different opinions
There is a disputed case among the manuscripts studied here: In the e-codices 

“Standard description” for Cod. Sang. 603, Von Scarpatetti (2003) counts, with some 

hesitation, Hand 2 (csg0603B), “163a–443b, 500a–571b, frakturnahe Bastarda,” and 

Hand 3 (csg0603C), “446a–499b, sehr charakteristische, eckige Bastarda,” as two 

different scribes. Mengis (2013, 334) is of the opposite opinion: She holds that these 

page sequences are produced by one and the same hand (as Von Scarpatetti notes, 

being aware of Mengis’ then unpublished work). In the data for the evaluation of 

the current system, Hands 2 and Hands 3 were, following Von Scarpatetti, counted 

as two different ones. In the evaluation rounds, we saw that the instances of both 

hands were attributed with 100% top-1 accuracy. (Notice their absence from the 
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list of errors in Table 1.) This means that the system definitely can tell them apart. 

It also justifies the conclusion that they are “objectively” different. So, if Hand 

2 and Hand 3 are from the same individual, she must have changed her writing 

characteristics in a systematic way from one unit to the next. Nevertheless, if we 

look at the component attributions we find many Hand 3–Hand 2 associations. This 

is, for instance, illustrated by Figure 4, where page 468 (the fourth) in the Hand 3 

(csg0603C) sequence was queried against the 16th pages in the scribe sequences 

(as in Figure 3 example). Nine out of the 13 erroneous component attributions 

we see here are to Hand 2 (csg0603B). Many details of the two hands are strikingly 

similar, but still the vast majority, 91 (43 of them exhibited in the table) of the 120 

component attributions point correctly to Hand 3.

5.3 Errors
As mentioned above, Table 1 gives an overview of the erroneous predictions 

generated in the evaluation rounds. We can see that the incorrect predictions in all 

cases attribute the images to hands producing the same script as the correct scribe. 

Figure 4: Matched image components for page 468 in the csg0603C hand. The page 
was attributed correctly (91 component attributions out of 120 support that), but 
many components were matched with the csg0603B hand. (The table only shows 
the 56 strongest instances of the 120 component attributions which would decide 
the verdict on the page.)
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So, for instance, the most often misclassified hand, csg0186B, was associated with 

ten other Carolingian minuscule hands. Similar situations obtain for csg0576 and 

csg0562B, with 51 and 47 errors, respectively. Again these hands are in Carolingian 

minuscule and they were consistently attributed to scribes writing in the same script. 

Figure 5 illustrates what happened when page 151 of the csg0186B sequence was 

queried against all the 16th pages in the scribe sequences. (This selection of data 

could have been part of an evaluation round.) The voting based on the 120 best 

component matches (of which 56 are shown) gave most support to csg0078 (33 

votes) ranking the correct csg0186B in the second place (29 votes). However, the 

matching of the exhibited components stays within the current script and letter 

Figure 5: Matched image components for page 148 in the csg0186B hand. The 
hand csg0186B is the one which was most often misclassified in the evaluation. 
For the components that we can see here, the associations stay in the Carolingian 
minuscule script, and in the same grapheme (sequence), but many point in the 
direction of an erroneous hand. The three top hands for this page as regarding 
number of votes received are csg0078 (33 votes, in yellow), csg0186B (29 votes), 
and csg0569 (22 votes), of a total of 120 votes. (The image only shows the 56 
strongest ones.)
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category: We only see Carolingian minuscule letters of the right grapheme matching 

the csg0186B components, and one ⟨re⟩–⟨re⟩ coupling. In particular, instances of 

⟨s⟩ dominate the picture. Figure 5 also illustrates the fact that the feature model is 

neutral with respect to the size of components.

The Bastarda scribe csg0586, the second most often misclassified one, gave rise 

to 59 errors. The letters of this scribe are connected by thick lines in a way that seem 

to cause an unusually small number of components to be extracted. This probably 

contributed to the difficulties. However, we see again that these attributions are 

to scribes using the same kind of script, i.e. other varieties of Bastarda, and to 

uubC528, which, like csg0586, is characterized as a cursive script. This suggests that 

a method similar to the one proposed here could be used to address the task of script 

classification.

The most common specific incorrect attribution (34 cases) is pages from 

csg0990A being classified as csg0990B. As mentioned above, the two hands represent 

very similar Bastarda scripts, and worked in the same scriptorium at the same time. 

A similar situation can be seen as regards the hand csg0562B. It is striking that it 

was often, in 32 cases to be precise, attributed to csg0053. According to Von Euw 

(2008) the Cod. Sang. 562 scribe “gehören wohl zum Kreis um Sintram”, the scribe 

behind Cod. Sang. 53. The similarity that the system found between the two hands is 

consequently consistent with previous observations.

6 Conclusions
We have outlined and evaluated an automatic system for identifying the most 

plausible scribe responsible for the writing found in a manuscript image. The set of 

known scribes was defined by one manuscript image for each hand in the individual 

experiments we conducted. The central principle of the system is that scribe 

attribution is performed as a two-step bottom-up classification procedure. First, the 

system classifies roughly letter-size components by means of “nearest neighbour” 

classification, based on shape-related similarity. Secondly, the set of component-level 

attributions, which typically contains hundreds of elements for a page, is used to 

predict the page scribe by means of a voting procedure. Both the pairings of similar 
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components and the voting procedure are easy to understand for a user without 

knowledge about the computational details of the system. This makes it possible 

to instruct the system to generate a visualized presentation of the evidence for a 

proposed scribe attribution. This forms a kind of argument which highlights the 

pairwise similarities between the writing components which were taken to decide 

the issue. This innovative feature allows the system to provide input to qualitative 

palaeographic analysis.

The binarization step and the extraction of writing components are motivated 

by a wish to specifically focus on the writing as ink on the writing support. This 

idea goes hand in hand with the assumption that in general writing is a matter of 

a bichrome contrast between ink and background. Notwithstanding, the design of 

many medieval manuscripts, also several of those in the current data set, makes 

artful use of several colours. Colours and their distribution also have a lot to tell 

about the composition of the ink and the writing material, as well as about the way a 

manuscript has been handled during the centuries. It is certainly possible to exploit 

this information in a classification system associating pages with codicological 

units, and it would most likely be useful for the current data. This would however 

be another task, one of performing codicological unit attribution based on the full 

range of information available in manuscript images. This problem is worthwhile 

and interesting in its own right, but it is something else than scribe attribution based 

on the writing itself as the visible trace of the scribe’s performance.

The basic principle of the present system, that of performing scribe attribution 

bottom-up, classifying details first and derive a verdict on the whole sample from 

the detail-level attributions, is compatible with further refinement of the modules 

involved. The binarization module, the component extraction and selection, the 

feature model, the component classification algorithm, and the voting procedure all 

invite experimentation with more sophisticated and context-sensitive mechanisms. 

In particular, we can note that the system treats all writing components in the same 

way. The examples in Figures 3–5 illustrate how ⟨e⟩–⟨e⟩, ⟨r⟩–⟨r⟩, ⟨s⟩–⟨s⟩, and ⟨t⟩–⟨t⟩ 

matches dominate the pictures. This is obviously related to the fact that these letters 
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are frequent in the data, which reflects their distribution in the languages involved 

(in these examples mainly Latin and German). Moreover, the segmentation module 

and the feature model rank the matched components in a way that will promote 

certain components. So, for instance, instances of Carolingian ⟨s⟩ are typically 

isolated, easy to retrieve, and will fit the bounding box in a regular way. A traditional 

palaeographer, by contrast, would probably pay attention to different letter types, 

guided by assumptions about which letters tend to be the most distinctive ones for 

individual scribes. As Figure 3 shows, two-letter components, like ⟨er⟩, ⟨or⟩, ⟨en⟩, and 

⟨er⟩, also contribute to the attribution process. We can see this as a way in which the 

present system is able to capture aspects of the “graphical chain”. By modifying the 

parameter setting constraining the segmentation process it is possible to instruct the 

system to extract a relatively larger portion of two-letter, or even wider, components. 

It would also be possible to use clustering of the labelled components in order to 

enforce that different shapes (letters) are considered in a more controlled way in the 

attribution process.

The evaluation data do not present the more challenging task of identifying 

scribes across different codices, with possibly different scripts, let alone across 

different languages. Rather, in the data, each scribe is represented by one codex in 

one language. As illustrated by the examples discussed above, language influences 

which writing components are likely to be extracted and consequently how they can 

be matched. To explore the present system for cross-language scribe attribution is an 

interesting possibility for future research.

Considering that the present system is a simple and straightforward one, it 

works remarkably well. It attributes scribes to manuscript images with a high degree 

of correctness, and it has the ability to show us why it counts an image as the work 

of a known scribe. In order to create a really useful software tool from the ideas that 

we have exploited here, the system should be equipped with an interface that allows 

the user to experiment with different modules and parameter settings. Furthermore, 

as hinted above, systems of this kind should be implemented in a fashion that makes 

it possible to work with really large collections of manuscripts.
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