
Research
How to Cite: Haverals, Wouter, Folgert Karsdorp, and Mike Kestemont.
2019. “Data-Driven Syllabification for Middle Dutch.” Digital Medievalist
12(1): 2, pp. 1–23. DOI: https://doi.org/10.16995/dm.83
Published: 04 November 2019

Peer Review:
This is a peer-reviewed article in Digital Medievalist, a journal published by the Open Library of Humanities.

Copyright:
© 2019 The Author(s). This is an open-access article distributed under the terms of the Creative
 Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use,
 distribution, and reproduction in any medium, provided the original author and source are credited.
See http://creativecommons.org/licenses/by/4.0/.

Open Access:
Digital Medievalist is a peer-reviewed open access journal.

Digital Preservation:
The Open Library of Humanities and all its journals are digitally preserved in the CLOCKSS scholarly
archive service.

https://doi.org/10.16995/dm.83
http://creativecommons.org/licenses/by/4.0/

Haverals, Wouter, et al. 2019. “Data-Driven
Syllabification for Middle Dutch.” Digital
Medievalist 12(1): 2, pp. 1–23. DOI: https://
doi.org/10.16995/dm.83

RESEARCH

Data-Driven Syllabification for Middle
Dutch
Wouter Haverals1, Folgert Karsdorp2 and Mike Kestemont1

1 University of Antwerp, BE
2 Meertens Institute – KNAW, NL
Corresponding author: Wouter Haverals (wouter.haverals@uantwerp.be)

The task of automatically separating Middle Dutch words into syllables is
a challenging one. A first method was presented by Bouma and Hermans
(2012), who combined a rule-based finite-state component with data-
driven error correction. Achieving an average word accuracy of 96.5%,
their system surely is a satisfactory one, although it leaves room for
improvement. Generally speaking, rule-based methods are less attractive
for dealing with a medieval language like Middle Dutch, where not only
each dialect has its own spelling preferences, but where there is also
much idiosyncratic variation among scribes. This paper presents a different
method for the task of automatically syllabifying Middle Dutch words,
which does not rely on a set of pre-defined linguistic information. Using
a Recurrent Neural Network (RNN) with Long-Short-Term Memory cells
(LSTM), we obtain a system which outperforms the rule-based method both
in robustness and in effort.

Keywords: automatic syllabification; data-driven methods; recurrent neural
network; Middle Dutch; orthographic variation

1 Introduction
§1 The main aim of this study is to develop a tool for automatically syllabifying

Middle Dutch words. It goes without saying that the best way to go about this task

would be through a simple look-up query in a dictionary, where words are stored

alongside their syllabified versions. This method, however, is unattainable for Middle

Dutch because of mainly two reasons:

1. Although a dictionary for Middle Dutch does exist (Verdam and Verwijs

1885), it lacks information about syllable boundaries.

https://doi.org/10.16995/dm.83
https://doi.org/10.16995/dm.83
mailto:wouter.haverals@uantwerp.be

Haverals et al: Data-Driven Syllabification for Middle DutchArt. 2, page 2 of 23

2. More importantly, what we today call “Middle Dutch” is a container

concept, used for the various dialects spoken in the Low Countries (today:

Flanders and the Netherlands) between ca. 1150 and 1500. Since there is

no standardized spelling yet in this period, the same word can be spelled

in many different ways, depending on where or when a text was written.

Orthographic variation may even be present in the same text, written by

one and the same scribe. For instance, the Middle Dutch word for “damsel”

has the following – and more – spelling variants: joncfrouwe, joncvrauwe,

joncvrouwe, joncvrovwe, jonvrowe, ioncfrouwe, ionfrouwe, ioffrouwe, etc. (the

extensive orthographic in Middle Dutch is also the subject of a paper by

Van Halteren and Rem (2013), who noted that the lemma gelijk (“similarly”)

has 24 different word forms in the Corpus Van Reenen-Mulder).

Since there is no list available with all the different spelling variants of every Middle

Dutch word, and since the existing dictionary does not contain syllabified versions

of lemmas, one would like an automatic system that is able to correctly determine

syllable boundaries, while dealing with this multitude of spelling variation in a

flexible way. To achieve this, we propose a syllabification method that takes a pre-

annotated list of syllabified Middle Dutch words as input for an RNN-tagger.

2 Rules for syllabification of Modern Dutch
§2 Before we discuss the results of the Middle Dutch syllabifier, it is important

to gain insight into the rules that form the basis of correct syllabification for Dutch

in general, and for Middle Dutch in particular. Syllable structure in Dutch has been

the subject of various studies (Vennemann 1988; Booij 1999; Trommelen 2011). As

it is beyond the scope of this paper to provide an exhaustive explanatory model, we

will set out the general rules and principles that were followed when annotating the

training data.

§3 To give an example of the task at hand, consider the Dutch word

kerstavonden (IPA: [kεrstaːvɔndɘn]; English translation: “Christmas Eves”). On a naive

and unsubstantiated basis, we can propose a couple of different syllabifications,

presented in Table 1. On an intuitive basis, however, we get a feeling that some of

these candidates are less likely than others. But then what are the requirements for

Haverals et al: Data-Driven Syllabification for Middle Dutch Art. 2, page 3 of 23

correct syllabification? Part of the solution lies in breaking down the question to

‘what can be a possible syllable in Dutch?’

§4 In any language, a syllable consists of up to three elements: an onset, a

nucleus, and a coda. The nucleus is indispensable, and is – at least in modern Dutch

– always a vowel or a diphthong. Onset and coda, both optional, are the collections

of consonants that respectively precede or follow the nucleus. Nucleus and coda

combined form the syllable’s rhyme. Altogether, the internal structure of a syllable is

represented as in Figure 1 (with a lower-case sigma [σ] as the standard symbol for a

syllable in phonology studies).

§5 In order to obtain the correct syllabification of a Dutch word, we have to

take into account a couple of principles and constraints that are imposed onto this

template:

1. Sonority Ranking Hierarchy – The main constraint relates to the

contents of onset and coda. The order of consonants in both clusters is

determined by the Sonority Ranking Hierarchy (Figure 2). The sonority

Figure 1: Syllable template.

Table 1: Candidates for the syllabification of “kerstavonden”.

ke-rsta-von-den ker-sta-von-den kerst-a-vond-en

ke-rstav-ond-en kers-ta-vond-en kerst-a-von-den

ker-sta-vond-en kers-tav-on-den kerst-av-on-den

Figure 2: Sonority Ranking Hierarchy.

Haverals et al: Data-Driven Syllabification for Middle DutchArt. 2, page 4 of 23

of consonants has to decrease towards the outer edges of a well-formed

syllable. Subsequently, a mirror effect can be perceived: the onset of the

syllable will have the least sonorous consonants placed at the beginning,

whereas in the coda, they have to be placed near the end (Selkirk 1982;

Kager and Zonneveld 1986). With regard to the example kerstavonden, we

can dismiss the proposed syllabification (ke)σ (rsta)σ (von)σ (den)σ and (ke)σ

(rstav)σ (on)σ (den)σ, since the consonant cluster /rst/ in the onset of the

second syllable violates the Sonority Ranking Hierarchy.1

2. Maximum Onset Principle – Although in compliance with the Sonority

Ranking Hierarchy, the proposed syllabification (kers)σ (tav)σ (on)σ (den)σ

is incorrect. Like many other Germanic languages, Dutch syllabification

adheres to the Maximum Onset Principle, which states that consonants

are maximally assigned to the onset of a syllable as long as it is permitted

by the Sonority Ranking Hierarchy (Selkirk 1982; Trommelen 2011). In

the aforementioned example, the coda /v/ of the second syllable has to

be appended to the onset of the next syllable, in compliance with the

Maximum Onset Principle.

3. Morpheme boundaries – In our reasoning thus far, syllable boundaries

are determined on the basis of the phonological properties of words.

Both the Sonority Ranking Hierarchy and the Maximum Onset Principle

are motivated by the (im)possibility to pronounce particular clusters of

consonants. Superimposed on these prosodic constraints, however, is a

principle that pertains to the domain of morphology, namely: within a

prosodic word, morphemes are independent domains of syllabification

(Booij 1999, 29–30). Or, in other words, syllable boundaries tend to

follow morphological boundaries. Since kerstavonden is a compound

 1 Without going too deep into the matter, it should be noted that there are some exceptions to the

Sonority Ranking Hierarchy. For Germanic languages, the most prominent one is the possibility of /s/

functioning as a sort of appendix, which, in some cases, can be added to the beginning of an onset,

or to the end of a coda. This results in the possibility of having e.g. /str/, /skr/ and /spl/ as legitimate

onsets in Dutch, and /lps/, /rks/, /rts/ as well-formed codas (Booij 1999, 26–29).

Haverals et al: Data-Driven Syllabification for Middle Dutch Art. 2, page 5 of 23

that consists of kerst+avonden, we can conclude that also the previously

mentioned syllabification (kers)σ (ta)σ (von)σ (den)σ is faulty. As a result, the

only possible syllabification of the word kerstavonden is (kerst)σ (a)σ (von)σ

(den)σ.

In conclusion, correct syllabification comes down to ticking boxes. Firstly, when

syllable boundaries surpass morpheme boundaries, one can immediately reject

the proposed syllabification. Secondly, consonants are maximally assigned to the

onset, while – thirdly – respecting the Sonority Ranking Hierarchy. For the proposed

syllabifications of kerstavonden, ticking these boxes produces a set of possibilities as

in Table 2. The third column in this table indicates how well the onset is saturated

according to the Maximum Onset Principle on a scale of one to three dots. For each

consonant that could have been added to the onset but was not, one dot is removed.

3 Syllabification of Middle Dutch
§6 Syllabification for Middle Dutch follows the same general principles as the ones

outlined above for Modern Dutch. A challenge, however, is posed by the historic

language’s orthography. With respect to the task of syllabification, it is especially

important that our model is able to distinguish consonants from vowels. However,

in Middle Dutch the same grapheme can sometimes have both those sound values.

Table 2: Syllabification possibilities for the word “kerstavonden” evaluated.

Proposed
syllabification

Sonority Ranking
Hierarchy

Maximum
Onset Principle

Morpheme
Boundaries

ke-rsta-von-den ✗ ••• ✗

ke-rstav-ond-en ✗ • ✗

ker-sta-von-den ✓ ••• ✗

ker-stav-on-den ✓ •• ✗

kers-tav-on-den ✓ • ✗

kers-ta-vond-en ✓ • ✗

kerst-av-on-den ✓ •• ✓

kerst-a-vond-en ✓ •• ✓

kerst-a-von-den ✓ ••• ✓

Haverals et al: Data-Driven Syllabification for Middle DutchArt. 2, page 6 of 23

For instance, the letters 〈u〉 and 〈v〉 are often used interchangeably. In a word like

huse/hvse (“house”) they both have the sound value of the vowel /y/, yet in the word

over/ouer (“about”) they should be pronounced as a consonant /v/. Sometimes even,

one word can have both phonetic realizations: in geualueert (“evaluated”), the first

〈u〉 represents a consonant and the second one a vowel. When we will be evaluating

the syllabifier in the end, we must pay special attention to cases like this where

there is an increased risk of incorrectly appending a grapheme to the onset, coda or

nucleus. Table 3 provides an oversight of such “graphemic pitfalls” for Middle Dutch

syllabification.

§7 Dealing with the orthographic variation also means making decisions

– some more arbitrary than others – with regard to what will be considered as a

correct syllabification of a Middle Dutch word. An example of such a decision

can be illustrated by our dealing with the graphemic cluster 〈ie〉. It is generally

assumed that Middle Dutch script 〈ie〉 was pronounced as monophthongal /iː/. In

Table 3: Graphemic ambiguity in Middle Dutch. The words presented in this table are
all part of the Corpus Van Reenen-Mulder, used in the syllabification experiment.

Phoneme Graphemes Syllabified examples

/y/ 〈u〉, 〈v〉 hun-dert, hvn-dert
ghe-des-tru-eert, ghe-des-trv-eert
u-we, v-we

/v/ 〈u〉, 〈v〉 o-uer, o-ver
ad-uo-ca-te, ad-vo-ca-te
he-mel-uaert, he-mel-vaert

/i/ 〈i〉, 〈ie〉, 〈j〉, 〈y〉, 〈ij〉 vi-an-de, vy-an-de
prjn-ci-pael, prin-ci-pael
pro-chi, pro-chie, pro-chij, pro-chy

/j/ 〈i〉, 〈j〉, 〈y〉 iaer-lecs, jaer-lecs
ionc-frou, jonc-frou
za-yen, za-ien

/uː/ 〈u〉, 〈uu〉, 〈v〉, 〈vv〉,
〈w〉

hu-se, huu-se, hvv-se, hw-se
suut-si-de, swt-si-de
erf-hu-re, erf-hw-re

/w/ 〈uu〉, 〈vv〉, 〈w〉 on-be-duuon-ghen, on-be-dwon-
ghen
vve-gen, we-gen
op-uuart, op-waert

Haverals et al: Data-Driven Syllabification for Middle Dutch Art. 2, page 7 of 23

thirteenth-century Flanders, however, one could argue that, when this cluster occurs

at the outer-right edge of a word, 〈ie〉 was pronounced as bisyllabic /i.jə/ (van Loey

1976). Partie (“part”), for instance, a word frequently used by Maerlant in his rhymed

chronicle Spiegel Historiael (ca.1284–ca.1289) most likely had to be pronounced as

/par.ti.jə/. This can be deduced from rhyme pairs such as partie : lije, where the

grapheme 〈j〉 has the sound value of a consonant and thus marks a syllable boundary.

In the same text, we also find rhyme combinations such as philosophie : lije, paertije :

normendie, indicating that in Maerlant’s Spiegel Historiael the syllabified versions of

these words should therefore be: (par)σ (ti)σ (e)σ, (li)σ (je)σ, (phi)σ (lo)σ (so)σ (phi)σ (e)σ,

(nor)σ (men)σ (di)σ (e)σ. Since these words never form rhyme pairs with monosyllabic

words like die, drie, zie or wie in Maerlant’s work, it reinforces our assumption of 〈ie〉

as bisyllabic /i.jə/. It has been argued, however, that during the fourteenth century

word-final bisyllabic 〈ie〉 evolved into a single syllable (van Loey 1976, p. 54–55,

p. 60). Here as well, arguments can be formed on the basis of rhyme combinations.

In the rhymed chronicle De Grimbergse oorlog (ca.1350), partie frequently rhymes

with monosyllabic die, drie, sie, vrie, nie. Although this does not undisputedly

prove that from the fourteenth century onwards all word-final graphemic clusters

〈ie〉 in all dialect regions have to be considered as monosyllabic, there surely is a

tendency towards this phonetic realization. Because of this, we follow the pragmatic

convention to consider all word-final clusters 〈ie〉 to be monophthongal /iː/.

§8 Another noteworthy decision that was made has to do with clitic forms

and contractions, which are syllabified according to their phonetic realizations. For

example, sbisscops (des+bisscops) is syllabified as sbis-scops, like one would also

syllabify the English possessive bishop’s as bi-shops. The same goes for enclitics such

as gaedi (gaet+di) and sidi (sijt+ghi). Here, however, it becomes rather difficult to

delineate the exact morpheme boundaries, since the grapheme 〈d〉 in both words is

the result of an assimilation process. Because of this, we decided to place a syllable

boundary in compliance to the Maximum Onset Principle: gae-di, si-di.

§9 Finally, the three major principles for syllabification (as outlined in section

2) were adhered to when encountering words that contain a double consonant with

the same sound value. For example, the modern-day Dutch word achttien (“eighteen”)

Haverals et al: Data-Driven Syllabification for Middle DutchArt. 2, page 8 of 23

occurs in our corpus of Middle Dutch words in various spellings. When it is spelled as

achtien with one 〈t〉, that consonant is added to the second syllable. Thus, respecting

the Maximum Onset Principle, we syllabify ach-tien. In the case of the spelling

achttien, a syllable boundary occurs between 〈tt〉. In compliance with the Sonority

Ranking Hierarchy, we therefore syllabify words like achttien, ancker and avondde as

acht-tien, anc-ker and a-vond-de.

4 Previous research by Bouma and Hermans
§10 A first system of automatic syllabification of Middle Dutch was developed

by Bouma and Hermans (2012), whose approach comprises two stages: a finite-

state transducer and data-driven error correction. The first stage heavily relies on

definitions of grapheme sequences that constitute possible nuclei and onsets in

Middle Dutch (the groundwork of the final-state transducer used by Bouma and

Hermans for Middle Dutch has been laid by Bouma in 2003). Superimposed onto

these definitions, Bouma and Hermans included various rules that are meant to deal

with Middle Dutch’s orthographic variation (as outlined in Table 3). An example of

such a rule is the one that has to prevent 〈u〉 from being recognized as a vowel (/y/),

when it is actually a consonant (/v/):

In the sequences 〈aue〉, 〈eue〉, and 〈oui〉, 〈u〉 almost always functions as

a 〈v〉. Therefore, we replace such sequences with 〈aUe〉, 〈eUe〉, and 〈oUi〉,

respectively, where we use 〈U〉 as the character that denotes a 〈u〉 functioning

as a consonant (Bouma and Hermans 2012, p. 33).

Although the premise of this rule is legitimate, a significant risk is lurking: the

prospect of being incomplete. And indeed, the above-mentioned rule disregards

many other possible grapheme clusters. To name a few: 〈aui〉, 〈auo〉, 〈euo〉, 〈eui〉,

〈eua〉, 〈oui〉 etc. are all environments where the character 〈u〉 can also function as a

〈v〉.

§11 It is mainly because definitions and rules like the one above have been

drafted without striving towards exhaustiveness that syllabification errors are still

prevalent after completing the first stage of their experiment. An intermediate

Haverals et al: Data-Driven Syllabification for Middle Dutch Art. 2, page 9 of 23

evaluation of Bouma & Hermans’ rule-based system, carried out on a sample of

20,139 Middle Dutch words, shows that 90.1% of words are correctly syllabified. The

implication here is that nearly 10% needs to be corrected in the second stage, during

manual error correction. The task of skimming through ca. 20,000 words that have

been syllabified correctly in 90% of the cases, is one that puts a great deal of strain

on an annotator. Upon inspection, 107 words were still incorrectly hyphenated (that

is 0.53% out of the total number of 20,139 words) in Bouma and Hermans’ manually

corrected word list.

§12 Finally, transformation-based learning, as developed for POS tagging by

Brill (1995), was applied. Through this machine learning method, new rules were

automatically deduced by comparing the output of the automatic finite-state

transducer with the human-corrected word list. After implementing the highest

scoring, new-found rules, Bouma and Hermans’ syllabification model yields a

hyphenation accuracy score of 97.9% and a word accuracy of 96.5%.2

5 Experiment and results
§13 The Middle Dutch automatic syllabifier presented in this paper builds on

the research carried out by Bouma and Hermans but moves away from manually

specified rules: without explicitly hard-coding various rules, our model is able to apply

syllabification rules and conventions solely from a supervised learning experience.

5.1 Data set
§14 Like Bouma and Hermans’ experiment, the data used as training material

for our syllabification model stems from the Corpus Van Reenen-Mulder (CRM). This

corpus, created by Van Reenen and Mulder (1993) at the Free University Amsterdam,

contains approximately 2,700 charters, written in the Netherlands and Flanders

between 1300 and 1400 (all charters are freely accessible in plain text format on the

corpus page of Diachronie.nl, hosted by the Meertens Institute). Content-wise, most

 2 The hyphenation accuracy is the percentage of correctly inserted hyphens in total, whereas word

accuracy is the percentage of correctly hyphenated words. E.g. kerst-av-on-den has 2/3 hyphens

placed correctly. The hyphenation accuracy is thus 66%. However, since the full word is syllabified

incorrectly, word accuracy is 0%.

http://www.diachronie.nl/corpora/

Haverals et al: Data-Driven Syllabification for Middle DutchArt. 2, page 10 of 23

charters deal with administrative law, disputes or regulations that are made between

two or more parties. The medieval charter can therefore best be compared with the

contemporary notarial deed.

§15 The great benefit of working with the CRM lies in the widespread

geographic distribution of the material. From the north of Holland to the south of

Flanders, all major Middle Dutch dialectal varieties are represented. This geographic

diversity thus guarantees linguistic diversity, which is especially useful when – in the

end – we want our syllabifier to perform well across all variants of the Middle Dutch

language.

§16 Compared to the CRM word list used by Bouma and Hermans, the word

list in our experiment was modified in three ways. (1) First and foremost, whereas

Bouma and Hermans used only 20,139 words, alphabetically ranging from a to

kerstauonde, we expanded the word list so that it includes all 43,710 unique words

from the CRM corpus.3 These words were all syllabified; i.e. hyphens were inserted

in accordance with the guidelines outlined above. (2) Since the first half of our word

list overlaps with the manually reviewed word list from in Bouma and Hermans’

experiment, we assumed that this part of the list was without errors. However, as

already mentioned, syllabification errors were still prevalent. The second modification

made to the data was therefore: correction. In total, 107 erroneous syllabifications

were rectified (for some examples, see Table 4). Additionally, some inconsistent

syllabifications were amended. For example, in their corrected word list, Bouma and

Hermans sometimes syllabified the word ending 〈iaen〉 as (i)σ (aen)σ, yet at other

times they left (iaen)σ as one syllable. Since we want a machine learning algorithm to

learn from a list of syllabified words, this consistency is especially important. In total,

95 words from Bouma and Hermans’ list were found to be inconsistently syllabified

(for some examples, see Table 5). When manually reviewing the 43,710 syllabified

words used in our experiment, we made sure that this consistency was continued

throughout the entire data set. (3) Finally, several words were deleted from the list

 3 Some tokens in the CRM contain diacritic symbols to indicate abbreviations, clitic forms, or unclear

parts in the original charter. Striving towards orderliness, such tokens were excluded when collecting

the data.

Haverals et al: Data-Driven Syllabification for Middle Dutch Art. 2, page 11 of 23

when the orthography did not match the phonetic realization. Roman numerals

and ordinals such as cccxc, lxxvij, xxiiiisten or xxvjsten do not require syllabification,

since they are not pronounced according to their graphemic representations.

Their pronunciations are respectively: driehonderdnegentig (“three hundred

ninety”), zevenenzeventig (“seventy-seven”), vierentwintigste (“twenty-fourth”) and

negenentwintigste (“twenty-ninth”).

Table 4: Examples of erroneous syllabifications present in the data used by Bouma
and Hermans, along with their corrections. In total, 107 erroneous syllabifications
were rectified.

Incorrect syllabification Correct syllabification English Translation

bau-in-cho-ue ba-uinc-ho-ue Bavikhove [town name]

be-r-ven ber-ven righteous

ceyn-su-ri ceyns-uri duty-free

dau-ijds da-uijds David’s

die-se-lue die-sel-ue the same

dwer-se-rue dwers-er-ue farmyard

erd-u-ast erd-uast attached to the land

ghe-uu-oen-te ghe-uuoen-te customary

hen-rixe hen-ri-xe Hendrik’s

iair-lixe iair-li-xe yearly

kers-au-on-de kers-a-uon-de Christmas Eve

Table 5: Examples of inconsistent syllabifications present in the data used by Bouma
and Hermans, along with their corrections. In total, 95 inconsistencies were
amended.

Inconsistent syllabification Improved consistency English Translation

a-po-stel a-pos-tel apostle

ap-pos-tel ap-pos-tel

fa-bi-ans fa-bi-ans Fabian’s

fa-biaens fa-bi-aens

straat-e straa-te street

stra-te stra-te

eerf-lic-heit eerf-lic-heit hereditary

erf-fe-lee-cheit erf-fe-leec-heit

Haverals et al: Data-Driven Syllabification for Middle DutchArt. 2, page 12 of 23

§17 In conclusion, the data used as training material for the syllabification

experiment presented in this paper comprises 43,710 Middle Dutch syllabified

words, alphabetically ranging from a to zy-wer-des (“sideways”). Statistics on the

average length of words, the average number of syllables per word and the average

number of characters per syllable are provided in Table 6. The entire data set is also

made freely available for exploration and research purposes (Haverals 2018).

5.2 Model
§18 As an alternative to the rule-based methodology of Bouma and Hermans

(2012), we employ a data-driven method, which is able to infer correct syllable

boundaries solely from evidence. The evidence in this case is the human-reviewed list

of 43,710 syllabified Middle Dutch words. Our model architecture is based on a fairly

straightforward character-level Recurrent Neural Network (RNN) to produce syllable

segmentations on the basis of the output of a stack of Long-Short Term Memory (LSTM)

layers, as illustrated in Figure 3. The original paper on LSTM machine learning is by

Hochreiter and Schmidhuber (1997). One of the great benefits of the LSTM-model

lies in its capability to take into account the larger context: by letting information

flow throughout the entire sequence model, the model learns not only from the

immediately adjacent graphemes, but has the ability to also retain information about

the entire sequence. This way, the model is especially efficient at learning about e.g.

the maximal saturation of the onset of a syllable and morpheme boundaries.

Table 6: Statistics on the data, used as training material for the syllabification
experiment. Total number of words = 43,710. Total number of syllables = 115,398.

Distribution of... characters
per word

syllables
per word

characters
per syllable

Mean 8.05 2.64 3.05

Std 2.55 0.96 1.01

Min 1 1 1

25% 6 2 2

50% 8 3 3

75% 10 3 4

Max 27 9 9

Haverals et al: Data-Driven Syllabification for Middle Dutch Art. 2, page 13 of 23

§19 For training the model, we split up the available data into three subsets: a

training set, a development set and a test set. We applied stratification on the basis of

the number of syllables per word, making sure that all splits contained a comparable

per-word syllable distribution. The model is optimized on the training set, which

represents 80% of all the data (34,968 words) and its performance is monitored (at

the end of each epoch) on the development set, holding 10% (4,371 words) of the

original data. We only store the model which minimizes the loss on the development

set. Finally, the best model is evaluated on the test set, which takes up another 10%

of the total amount of data.

§20 Each word in our model is presented to the model at the character-level,

i.e. as a sequence of graphemes. As customary in this sort of models, we do not

represent graphemes with a so-called one-hot encoding, but we use embeddings to

represent each grapheme (with a fixed dimensionality of 64). Additionally, special

symbols are appended to the beginning and end of each token (BOS and EOS).

Finally, words get padded to a standard length (i.e. the size of the longest training

token + 2, to accommodate for the BOS and EOS symbols) using a dedicated padding

symbol (PAD). Naturally, the predictions for these dummy symbols were not included

in the final evaluation. Characters that were not encountered in the training material

receive a special encoding (UNK). The task of the model, then, is to predict either

0 or 1 for each grapheme. When 0 is predicted there is no indication of a syllable

k e r s t a u o n d e

0 0 0 0 0 1 1 0 0 1 0

Layers
(n=1, 2 or 3)

Input

Output

Figure 3: Model architecture of the LSTM machine learning algorithm, taking the
word “kerstauonde” as input and predicting the output to be “kerst-a-uon-de”.

Haverals et al: Data-Driven Syllabification for Middle DutchArt. 2, page 14 of 23

boundary before this particular grapheme. The prediction of 1 means that a syllable

boundary is detected right before this grapheme.

§21 All code for this paper is available from GitHub; the code uses Python 3.6+

and has the following major dependencies: NumPy (Oliphant 2006), SciKit Learn

(Pedregosa et al. 2011), Keras (Chollet et al. 2015) and TensorFlow (Abadi et al. 2016).

5.3 Results
§22 When evaluating the model, we make a distinction between word accuracy

and hyphenation accuracy. Word accuracy is the percentage of fully correct syllabified

words, whereas hyphenation accuracy is the percentage of correctly inserted hyphens

across all words and across all syllable boundaries. The latter can be calculated at

the character-level. An illustration of both concepts is provided in the word list,

shown in Table 7. Word accuracy in this fictitious example is fairly low at 60% since

only 3/5 words are correctly syllabified. With 9 out of 11 hyphens placed correctly,

hyphenation accuracy is at 82%.

§23 The results presented in Table 8 and 9 are obtained after a training

regime of 30 epochs, with a batch size of 50 words. We used the cross-entropy loss in

Table 7: Exemplary words list with predictions and correct syllabifications. This list
serves as an example for the purpose of explaining the difference between word
and hyphenation accuracy. Examples are not actual predictions made by the model.

Prediction Correct Word Hyphens

smou-te-nee-ren smou-te-nee-ren ✓ 3/3

wa-ter-loes-weru-en wa-ter-loes-wer-uen ✗ 3/4

aen-slaen aen-slaen ✓ 1/1

arm arm ✓ 0/0

cos-te-liken cos-te-li-ken ✗ 2/3

Table 8: Word accuracy (epochs = 30, dropout = 0.25, embedding dimension = 64).

Test score 1 layer 2 layers 3 layers

Dev score

64 dimensions 95.61% 95.08% 96.84% 96.59% 97.16% 96.96%

128 dimensions 95.70% 95.29% 97.19% 97.46% 96.87% 96.71%

256 dimensions 96.57% 96.00% 97.55% 97.52% 97.19% 97.52%

https://github.com/WHaverals/syllabify
http://www.numpy.org/
http://scikit-learn.org/stable/
http://keras.io/
https://www.tensorflow.org/

Haverals et al: Data-Driven Syllabification for Middle Dutch Art. 2, page 15 of 23

combination with the Adam optimizer (Kingma and Ba 2014), with an initial learning

rate of 0.001. This learning rate was reduced by a factor of 0.3 after each epoch if the

validation loss did not decrease. The model was trained under different conditions,

during which we varied the number of hidden layers (1 up to 3) and the number of

dimensions (64 up to 256). We insert a moderate level of so-called dropout (p = .25)

after the embedding layer, between the recurrent layers, and before the final dense

layer (Srivastava et al. 2014). The key idea here is that by randomly dropping units

(along with their connections) during training, overfitting can be prevented.

5.4 Model inspection
§24 The best results are obtained with the two-layered model combined with

256 dimensions. Under these circumstances, our model yields a word accuracy of

97.55% (Table 8) and a hyphenation accuracy of 99.50% (Table 9) on the test set.

Overall, scores improve most when stepping up from a 1-layered to a 2-layered

model. When adding a third layer, some minor improvements are also noticeable,

but overall scores appear to have already stabilized in the 2-layered model. As to the

number of dimensions, the difference of scores between 64 and 256 dimensions

never exceeds an improvement of 1.00% on the word level and 0.20% on the

hyphenation level.

§25 We compared the output of our best LSTM-model with the output of

Bouma and Hermans’ rule-based model (both on the same test set of 4,371 words).

From this comparison, we gained the results shown in Table 10: on the level of

word accuracy, the LSTM-model (97.55%) outperforms Bouma and Hermans’ model

(91.33%) by 6.25%. On the hyphenation accuracy-level, the improvement is more

subtle with an increase of 1.53% over the rule-based model.

Table 9: Hyphenation accuracy (epochs = 30, dropout = 0.25, embedding
dimension = 64).

Test score 1 layer 2 layers 3 layers

Dev score

64 dimensions 99.19% 99.07% 99.38% 99.31% 99.44% 99.40%

128 dimensions 99.24% 99.16% 99.47% 99.47% 99.37% 99.32%

256 dimensions 99.34% 99.22% 99.50% 99.48% 99.46% 99.46%

Haverals et al: Data-Driven Syllabification for Middle DutchArt. 2, page 16 of 23

§26 Additionally, both the Levenshtein distance and F1-score were calculated

for the above-mentioned best model. The Levenshtein distance is a useful metric,

often applied in spell checking algorithms, for measuring the amount of difference

between two sequences (Levenshtein 1966). Briefly put, the logic behind this metric

is defined by the number of edits that are required to convert one string into the

other.4 In our case, we apply the Levenshtein distance in order to compare the correct,

gold standard syllabifications to the predictions made by our model. As one can see

in Table 10, the Levenshtein distance of our model is very low with an average of

.04 edits, which is more than three times as low as the distance calculated for Bouma

and Hermans’ model (.17). With the F1-score, finally, we wanted to gain insight in

the balance between precision and recall on the character level, because there is a

significant imbalance for the two classification labels in our model. Here also, the

score obtained for the LSTM-model is nearing the perfect score of 1.0.

§27 Surely, developing an automatic syllabifier is only really interesting if it can

also be effectively deployed onto other corpora. In order to get a good understanding

of the syllabifier’s potential, we evaluated our model on an out-of-corpus sample

of Middle Dutch words. To this end, we randomly selected 2,000 words from the

Cd-rom Middelnederlands (1998). Unlike the legal and administrative character of the

Corpus Van Reenen-Mulder, the Cd-rom Middelnederlands is a corpus of literary texts,

both rhymed and prose. In order to make sure that our evaluation was carried out

 4 As a clarifying example for the Levenshtein distance, consider the following two syllabifications:

af-ter-wards and aft-er-ward-s. The Levenshtein distance here is 3, since it would require three edits in

order to transform one sequence into the other (twice the deletion and once the insertion of a “-”).

Table 10: Comparison of results between Bouma and Hermans’ rule-based model
and the LSTM-model on the test set (n of words = 4,371).

Bouma & Hermans
(2012)

Our model

Word accuracy 91.33% 97.55%

Hyphen accuracy 97.99% 99.50%

Levenshtein distance .17 .04

F1-score .95 .99

Haverals et al: Data-Driven Syllabification for Middle Dutch Art. 2, page 17 of 23

on new, unseen words to the model, we cross-checked the sample from the Cd-rom

Middelnederlands with the CRM-word list. In total, we found that 1,748 out of the

2,000 words did not occur in the CRM, and thus were unseen to the model. From

those 1,748 words, only 22 (1.26%) were syllabified incorrectly by the LSTM-model,

whereas Bouma and Hermans’ model made 188 mistakes (10.75%) (Table 11). Also

on the level of hyphenation accuracy, the LSTM-model achieves a remarkable result

of 99.76%.

§28 The observation that our model’s performance is even better on a random

sample of unseen words is likely due to the fact that word frequency was not taken

into account when training the model. Because the LSTM-model was trained on all

the words from the CRM-corpus (i.e. it has no knowledge of which words are more

common and which ones are more rare), mistakes are most likely made against low-

frequent words. The scores shown in Table 10 can therefore be an underestimation

of the model’s performance “in the wild”.

5.5 Model criticism
§29 Where does it still go wrong? From an inspection of the mistakes made by

both our LSTM-model and Bouma and Hermans’ model, we learn the following

(Table 12): (1) the LSTM-model is very accurate at respecting morpheme boundaries.

We notice this especially from adjectives ending in -heit and adverbs ending in -like.

In almost all cases, such words are syllabified correctly by the LSTM-model, which

rightly treats the suffixes of these words as independent domains of syllabification

(e.g. domp-li-ke, ern-stic-heyt, rijp-heyt, siec-he-de, etc.). In syllabifications produced

by Bouma and Hermans’ model, we notice that the final letter of the stem sometimes

gets added to a morpheme that it does not belong to (e.g. dom-pli-ke, ern-sti-cheyt,

rij-pheyt, sie-che-de, etc.). Also prefixes like and-, ver- and on- are kept intact by the

Table 11: Comparison of results between Bouma and Hermans’ rule-based model
and the LSTM-model on an out-of-corpus sample of 1,748 Middle Dutch words.

Bouma & Hermans
(2012)

Our model

Word accuracy 89.24% 98.74%

Hyphen accuracy 97.64% 99.76%

Haverals et al: Data-Driven Syllabification for Middle DutchArt. 2, page 18 of 23

LSTM-model, (e.g. and-wer-de, on-uer-hoe-len, ver-uairt). (2) The latter examples also

show that the LSTM-model is highly efficient at discerning whether the grapheme 〈u〉

has to be pronounced as either /y/ or /v/, which was one of the challenges raised in

section 3. (3) However, the LSTM sometimes also lapses. This is the case with words

Table 12: Examples of syllabification errors made by both Bouma and Hermans’ rule-
based model and the LSTM-model. Color code: white cells are correctly syllabified
words; grey cells are syllabification errors.

Correct syllabification Bouma and Hermans (2012) Our system

aert-se-bis-cop aert-se-bi-scop aert-se-bi-scop

and-war-de an-dwar-de and-war-de

bae-re-uoet bae-reu-oet bae-re-uoet

be-ruer-ten be-ruer-ten ber-uer-ten

bloeit bloe-it bloeit

con-uen-tu-a-le co-nuen-tu-a-le con-uen-tu-a-le

cri-eer-den cri-eer-den crieer-den

des-tru-e-ren de-strue-ren des-true-ren

domp-li-ke dom-pli-ke domp-li-ke

dy-o-cle-ti-aen dy-o-cle-tiaen dy-o-cle-ti-aen

ern-stic-heyt ern-sti-cheyt ern-stic-heyt

ghe-en-det gheen-det gheen-det

ko-ninck-ri-ken ko-ninc-kri-ken ko-ninc-kri-ken

moey-te moe-y-te moey-te

on-uer-hoe-len o-nuer-hoe-len on-uer-hoe-len

recht-ueer-dic-heit rech-tue-er-di-cheit rech-t-ueer-dic-heit

rijp-heyt rij-pheyt rijp-heyt

sach-ic sa-chic sa-chic

siec-he-de sie-che-de siec-he-de

twij-uel twi-juel twij-uel

vet-heit ve-theit vet-heit

ver-uairt ve-ru-airt ver-uairt

vray-lijc vra-y-lijc vray-lijc

vreemt-he-de vreem-the-de vreem-the-de

waeyt wae-yt waeyt

wraec w-raec wraec

wrac-ghier w-rac-ghier wrac-ghier

zot-hei-de zo-thei-de zot-hei-de

Haverals et al: Data-Driven Syllabification for Middle Dutch Art. 2, page 19 of 23

that have a syllable boundary between two vowels, like crieerden, destrueren and

gheendet. It is not surprising that things go wrong here. The LSTM-model has seen

more instances where the graphemes 〈ee〉 and 〈ue〉 remain together, than where they

are separated. Although it does syllabify crieerden correctly, Bouma and Hermans’

model also frequently makes mistakes against words that contain syllable boundaries

between vowels. Overall, it is important to note that where the LSTM goes wrong, so

does Bouma and Hermans’ model. Out of the 26 word-level mistakes made by the

LSTM-model on the entire out-of-corpus sample, 20 of those mistakes are also made

by Bouma and Hermans’ model. The reverse, however, is not true. Where Bouma and

Hermans’ model goes wrong, the LSTM usually has it right.

6 Conclusion
§30 Essentially, there are two approaches to the task of automatic syllabification:

rule-based and data-driven. An automatic syllabifier for Middle Dutch was first

developed by Bouma and Hermans (2012), whose approach fundamentally is a

rule-based one. The way they approach the task is very elegant and the scores

they achieve are high. Nevertheless, one could argue that specifically for Middle

Dutch, their model is not a very robust one. By heavily relying on a set of rules

that describe possible nuclei, onsets and codas, their model underestimates the

somewhat erratic nature of Middle Dutch orthography. Because the spelling of

Middle Dutch allows a lot of variation both in diachronic and synchronic terms,

it is risky business to hard-code this information. The automatic syllabifier

presented in this paper responds to the need of not having to explicitly describe

any definitions, and thus guaranteeing more flexibility when it comes to spelling

variation. By resorting to a purely data-driven method, our model is extremely

effective at predicting syllable boundaries while respecting morpheme boundaries.

Using LSTM machine learning techniques, we obtain high results at the word level:

97.55% on the test set of the training material corpus, and 98.74% on an out-

of-corpus sample. The results of the automatic syllabifier for Middle Dutch are

therefore in line with comparative research on different syllabification methods,

finding data-driven methods to outperform rule-based techniques usually by huge

margins Marchand et al. (2009).

Haverals et al: Data-Driven Syllabification for Middle DutchArt. 2, page 20 of 23

§31 As Bouma and Hermans (2012) have established in their article, an

automatic syllabifier for Middle Dutch can serve a great deal of interesting research

questions. In the domain of historical linguistics, for example, the possibility

to syllabify an entire corpus of Middle Dutch text allows the researcher to trace

both spelling conventions and phonological change. At the same time, accurately

syllabifying Middle Dutch words can be of interest to the literary scholar. As shown

by Hench (2017) for Middle High German, syllabification is essential for gaining

insight in the soundscapes of medieval poetry. Finally, syllabification is an essential

stepping stone in metrical studies. Before one can determine the rhythmical aspects

of e.g. rhymed medieval poetry, precise and consistent syllabification is mandatory.

Contributors
Editorial
Recommending editor: Franz Fischer, Università Ca’ Foscari Venezia

Recommending referees: Katrien Depuydt, Instituut voor de Nederlandse Taal;

Felix Rau, Universität zu Köln

Authorial
The corresponding author is wh. Authorship is alphabetical after the drafting author

and principal technical lead. Author contributions, described using the CASRAI

CRedIT typology (Consortia Advancing Standards in Research Administration

Information, 2018), are as follows:

Conceptualization: wh, fk, mk

Methodology: wh, mk

Software: wh, fk, mk

Investigation: wh

Data curation: wh

Writing – Original Draft Preparation: wh

Writing – Review and Editing: wh, fk, mk

Visualization: wh

Supervision: fk, mk

Competing Interests
The authors have no competing interests to declare.

Haverals et al: Data-Driven Syllabification for Middle Dutch Art. 2, page 21 of 23

References
Abadi, M. et al. 2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems (https://tensorflow.org).

Booij, G. 1999. The Phonology of Dutch. Oxford: Oxford University Press.

Bouma, G. 2003. “Finite State Methods for Hyphenation.” Natural Language

Engineering 9(1): 5–20. DOI: https://doi.org/10.1017/S135132490300

3073

Bouma, G., and B. Hermans. 2012. “Syllabification of Middle Dutch.” In: F. Mambrini,

M. Passarotti, and C. Sporleder (Eds.), Proceedings of the Second Workshop on

Annotation of Corpora for Research in the Humanities, 27–39.

Brill, E. 1995. “Transformation-based Error-driven Learning and Natural Language

Processing: A Case Study in Part-of-speech Tagging.” Computational Linguistics

21(4): 543–565.

Chollet, F. et al. 2015. Keras (https://keras.io).

van Halteren, H., and M. Rem. 2013. Dealing with Orthographic Variation in a

Tagger-lemmatizer for Fourteenth Century Dutch Charters. Language Resources

and Evaluation 47(4): 1233–1259. DOI: https://doi.org/10.1007/s10579-013-

9236-1

Haverals, W. 2018. Middle Dutch syllabified words. [Data set]. DOI: http://doi.

org/10.5281/zenodo.2402048

Hench, C. 2017. Phonological Soundscapes in Medieval Poetry. In: Proceedings of

the Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage,

Social Sciences, Humanities and Literature, Vancouver, 46–56. DOI: https://doi.

org/10.18653/v1/W17-2207

Hochreiter, S., and J. Schmidhuber. 1997. Long Short-Term Memory.

Neural Computation 9(8): 1735–1780. DOI: https://doi.org/10.1162/

neco.1997.9.8.1735

Instituut voor de Nederlandse taal. 1998. Cd-rom Middelnederlands. Woordenboek

en teksten. Den Haag/Antwerpen: Sdu Uitgevers.

Kager, R., and W. Zonneveld. 1986. Schwa, Syllables, and extrametricality in

Dutch. The Linguistic Review 5(3): 197–222. DOI: https://doi.org/10.1515/

tlir.1986.5.3.197

https://tensorflow.org
https://doi.org/10.1017/S1351324903003073
https://doi.org/10.1017/S1351324903003073
https://keras.io
https://doi.org/10.1007/s10579-013-9236-1
https://doi.org/10.1007/s10579-013-9236-1
http://doi.org/10.5281/zenodo.2402048
http://doi.org/10.5281/zenodo.2402048
https://doi.org/10.18653/v1/W17-2207
https://doi.org/10.18653/v1/W17-2207
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1515/tlir.1986.5.3.197
https://doi.org/10.1515/tlir.1986.5.3.197

Haverals et al: Data-Driven Syllabification for Middle DutchArt. 2, page 22 of 23

Kingma, D. P., and J. Ba. 2014. Adam: A Method for Stochastic Optimization. In: arXiv

preprint arXiv:1412.6980, Volume abs/1412.6980. Published as a conference

paper at the 3rd International Conference for Learning Representations, San

Diego, 2015.

Levenshtein, V. 1966. Binary Codes Capable of Correcting Deletions, Insertions and

Reversals. Soviet Physics Doklady 10: 707–710.

van Loey, A. 1976. Middelnederlandse spraakkunst. II: Klankleer (7 ed.). Groningen:

Wolters.

Marchand, Y., C. Adsett, and R. Damper. 2009. Automatic Syllabification in

English: A Comparison of Different Algorithms. Language and Speech 52(1):

1–27. DOI: https://doi.org/10.1177/0023830908099881

Oliphant, T. E. 2006. A guide to NumPy (vol. 1). USA: Trelgol Publishing.

Pedregosa, F. et al. 2011. Scikit-learn: Machine Learning in Python. Journal of

Machine Learning Research 12: 2825–2830.

van Reenen, P., and M. Mulder. 1993. Een gegevensbank van 14de-eeuwse

Middelnederlandse dialecten op computer. Lexikos 3: 259–281. DOI: https://

doi.org/10.5788/3-1-1110

Selkirk, E. 1982. The Syllable. The Structure of Phonological Representations 2:

337–383.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

2014. Dropout: A Simple Way to Prevent Neural Networks from Overfitting.

Journal of Machine Learning Research 15: 1929–1958.

Trommelen, M. 2011. The Syllable in Dutch. Berlin/New York: De Gruyter Mouton.

Vennemann, T. 1988. Preference Laws for Syllable Structure, and the Explanation

of Sound Change with Special Reference to German, Germanic, Italian, and Latin.

Berlin/Boston: De Gruyter Mouton. DOI: https://doi.org/10.1515/978311084

9608

Verdam, J., and E. Verwijs. (Eds.) 1885. Middelnederlandsch Woordenboek (MNW).

Dan Haag: Nijhoff. Also accessible on-line through the ‘Gentegreerde Taalbank’

(http://gtb.inl.nl).

https://doi.org/10.1177/0023830908099881
https://doi.org/10.5788/3-1-1110
https://doi.org/10.5788/3-1-1110
https://doi.org/10.1515/9783110849608
https://doi.org/10.1515/9783110849608
http://gtb.inl.nl

Haverals et al: Data-Driven Syllabification for Middle Dutch Art. 2, page 23 of 23

How to cite this article: Haverals, Wouter, Folgert Karsdorp, and Mike Kestemont. 2019.
“Data-Driven Syllabification for Middle Dutch.” Digital Medievalist 12(1): 2, pp. 1–23. DOI:
https://doi.org/10.16995/dm.83

Published: 04 November 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the
terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

 OPEN ACCESS Digital Medievalist is a peer-reviewed open access journal
published by Open Library of Humanities.

https://doi.org/10.16995/dm.83
http://creativecommons.org/licenses/by/4.0/

	1 Introduction
	2 Rules for syllabification of Modern Dutch
	3 Syllabification of Middle Dutch
	4 Previous research by Bouma and Hermans
	5 Experiment and results
	5.1 Data set
	5.2 Model
	5.3 Results
	5.4 Model inspection
	5.5 Model criticism

	6 Conclusion
	Contributors
	Editorial
	Authorial

	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9
	Table 10
	Table 11
	Table 12

