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The task of automatically separating Middle Dutch words into syllables is 
a challenging one. A first method was presented by Bouma and Hermans 
(2012), who combined a rule-based finite-state component with data-
driven error correction. Achieving an average word accuracy of 96.5%, 
their system surely is a satisfactory one, although it leaves room for 
improvement. Generally speaking, rule-based methods are less attractive 
for dealing with a medieval language like Middle Dutch, where not only 
each dialect has its own spelling preferences, but where there is also 
much idiosyncratic variation among scribes. This paper presents a different 
method for the task of automatically syllabifying Middle Dutch words, 
which does not rely on a set of pre-defined linguistic information. Using 
a Recurrent Neural Network (RNN) with Long-Short-Term Memory cells 
(LSTM), we obtain a system which outperforms the rule-based method both 
in robustness and in effort.
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1 Introduction
§1 The main aim of this study is to develop a tool for automatically syllabifying 

Middle Dutch words. It goes without saying that the best way to go about this task 

would be through a simple look-up query in a dictionary, where words are stored 

alongside their syllabified versions. This method, however, is unattainable for Middle 

Dutch because of mainly two reasons:

1. Although a dictionary for Middle Dutch does exist (Verdam and Verwijs 

1885), it lacks information about syllable boundaries.
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2. More importantly, what we today call “Middle Dutch” is a container 

concept, used for the various dialects spoken in the Low Countries (today: 

Flanders and the Netherlands) between ca. 1150 and 1500. Since there is 

no standardized spelling yet in this period, the same word can be spelled 

in many different ways, depending on where or when a text was written. 

Orthographic variation may even be present in the same text, written by 

one and the same scribe. For instance, the Middle Dutch word for “damsel” 

has the following – and more – spelling variants: joncfrouwe, joncvrauwe, 

joncvrouwe, joncvrovwe, jonvrowe, ioncfrouwe, ionfrouwe, ioffrouwe, etc. (the 

extensive orthographic in Middle Dutch is also the subject of a paper by 

Van Halteren and Rem (2013), who noted that the lemma gelijk (“similarly”) 

has 24 different word forms in the Corpus Van Reenen-Mulder).

Since there is no list available with all the different spelling variants of every Middle 

Dutch word, and since the existing dictionary does not contain syllabified versions 

of lemmas, one would like an automatic system that is able to correctly determine 

syllable boundaries, while dealing with this multitude of spelling variation in a 

flexible way. To achieve this, we propose a syllabification method that takes a pre-

annotated list of syllabified Middle Dutch words as input for an RNN-tagger.

2 Rules for syllabification of Modern Dutch
§2 Before we discuss the results of the Middle Dutch syllabifier, it is important 

to gain insight into the rules that form the basis of correct syllabification for Dutch 

in general, and for Middle Dutch in particular. Syllable structure in Dutch has been 

the subject of various studies (Vennemann 1988; Booij 1999; Trommelen 2011). As 

it is beyond the scope of this paper to provide an exhaustive explanatory model, we 

will set out the general rules and principles that were followed when annotating the 

training data.

§3 To give an example of the task at hand, consider the Dutch word 

kerstavonden (IPA: [kεrstaːvɔndɘn]; English translation: “Christmas Eves”). On a naive 

and unsubstantiated basis, we can propose a couple of different syllabifications, 

presented in Table 1. On an intuitive basis, however, we get a feeling that some of 

these candidates are less likely than others. But then what are the requirements for 
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correct syllabification? Part of the solution lies in breaking down the question to 

‘what can be a possible syllable in Dutch?’

§4 In any language, a syllable consists of up to three elements: an onset, a 

nucleus, and a coda. The nucleus is indispensable, and is – at least in modern Dutch 

– always a vowel or a diphthong. Onset and coda, both optional, are the collections 

of consonants that respectively precede or follow the nucleus. Nucleus and coda 

combined form the syllable’s rhyme. Altogether, the internal structure of a syllable is 

represented as in Figure 1 (with a lower-case sigma [σ] as the standard symbol for a 

syllable in phonology studies).

§5 In order to obtain the correct syllabification of a Dutch word, we have to 

take into account a couple of principles and constraints that are imposed onto this 

template:

1. Sonority Ranking Hierarchy – The main constraint relates to the 

contents of onset and coda. The order of consonants in both clusters is 

determined by the Sonority Ranking Hierarchy (Figure 2). The sonority 

Figure 1: Syllable template.

Table 1: Candidates for the syllabification of “kerstavonden”.

ke-rsta-von-den ker-sta-von-den kerst-a-vond-en

ke-rstav-ond-en kers-ta-vond-en kerst-a-von-den

ker-sta-vond-en kers-tav-on-den kerst-av-on-den

Figure 2: Sonority Ranking Hierarchy.
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of consonants has to decrease towards the outer edges of a well-formed 

syllable. Subsequently, a mirror effect can be perceived: the onset of the 

syllable will have the least sonorous consonants placed at the beginning, 

whereas in the coda, they have to be placed near the end (Selkirk 1982; 

Kager and Zonneveld 1986). With regard to the example kerstavonden, we 

can dismiss the proposed syllabification (ke)σ (rsta)σ (von)σ (den)σ and (ke)σ 

(rstav)σ (on)σ (den)σ, since the consonant cluster /rst/ in the onset of the 

second syllable violates the Sonority Ranking Hierarchy.1

2. Maximum Onset Principle – Although in compliance with the Sonority 

Ranking Hierarchy, the proposed syllabification (kers)σ (tav)σ (on)σ (den)σ 

is incorrect. Like many other Germanic languages, Dutch syllabification 

adheres to the Maximum Onset Principle, which states that consonants 

are maximally assigned to the onset of a syllable as long as it is permitted 

by the Sonority Ranking Hierarchy (Selkirk 1982; Trommelen 2011). In 

the aforementioned example, the coda /v/ of the second syllable has to 

be appended to the onset of the next syllable, in compliance with the 

Maximum Onset Principle.

3. Morpheme boundaries – In our reasoning thus far, syllable boundaries 

are determined on the basis of the phonological properties of words. 

Both the Sonority Ranking Hierarchy and the Maximum Onset Principle 

are motivated by the (im)possibility to pronounce particular clusters of 

consonants. Superimposed on these prosodic constraints, however, is a 

principle that pertains to the domain of morphology, namely: within a 

prosodic word, morphemes are independent domains of syllabification 

(Booij 1999, 29–30). Or, in other words, syllable boundaries tend to 

follow morphological boundaries. Since kerstavonden is a compound 

 1 Without going too deep into the matter, it should be noted that there are some exceptions to the 

Sonority Ranking Hierarchy. For Germanic languages, the most prominent one is the possibility of /s/ 

functioning as a sort of appendix, which, in some cases, can be added to the beginning of an onset, 

or to the end of a coda. This results in the possibility of having e.g. /str/, /skr/ and /spl/ as legitimate 

onsets in Dutch, and /lps/, /rks/, /rts/ as well-formed codas (Booij 1999, 26–29).
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that consists of kerst+avonden, we can conclude that also the previously 

mentioned syllabification (kers)σ (ta)σ (von)σ (den)σ is faulty. As a result, the 

only possible syllabification of the word kerstavonden is (kerst)σ (a)σ (von)σ 

(den)σ.

In conclusion, correct syllabification comes down to ticking boxes. Firstly, when 

syllable boundaries surpass morpheme boundaries, one can immediately reject 

the proposed syllabification. Secondly, consonants are maximally assigned to the 

onset, while – thirdly – respecting the Sonority Ranking Hierarchy. For the proposed 

syllabifications of kerstavonden, ticking these boxes produces a set of possibilities as 

in Table 2. The third column in this table indicates how well the onset is saturated 

according to the Maximum Onset Principle on a scale of one to three dots. For each 

consonant that could have been added to the onset but was not, one dot is removed.

3 Syllabification of Middle Dutch
§6 Syllabification for Middle Dutch follows the same general principles as the ones 

outlined above for Modern Dutch. A challenge, however, is posed by the historic 

language’s orthography. With respect to the task of syllabification, it is especially 

important that our model is able to distinguish consonants from vowels. However, 

in Middle Dutch the same grapheme can sometimes have both those sound values. 

Table 2: Syllabification possibilities for the word “kerstavonden” evaluated.

Proposed 
syllabification 

Sonority Ranking 
Hierarchy 

Maximum 
Onset Principle 

Morpheme 
Boundaries

ke-rsta-von-den ✗ ••• ✗

ke-rstav-ond-en ✗ • ✗

ker-sta-von-den ✓ ••• ✗

ker-stav-on-den ✓ •• ✗

kers-tav-on-den ✓ • ✗

kers-ta-vond-en ✓ • ✗

kerst-av-on-den ✓ •• ✓

kerst-a-vond-en ✓ •• ✓

kerst-a-von-den ✓ ••• ✓
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For instance, the letters 〈u〉 and 〈v〉 are often used interchangeably. In a word like 

huse/hvse (“house”) they both have the sound value of the vowel /y/, yet in the word 

over/ouer (“about”) they should be pronounced as a consonant /v/. Sometimes even, 

one word can have both phonetic realizations: in geualueert (“evaluated”), the first 

〈u〉 represents a consonant and the second one a vowel. When we will be evaluating 

the syllabifier in the end, we must pay special attention to cases like this where 

there is an increased risk of incorrectly appending a grapheme to the onset, coda or 

nucleus. Table 3 provides an oversight of such “graphemic pitfalls” for Middle Dutch 

syllabification.

§7 Dealing with the orthographic variation also means making decisions 

– some more arbitrary than others – with regard to what will be considered as a 

correct syllabification of a Middle Dutch word. An example of such a decision 

can be illustrated by our dealing with the graphemic cluster 〈ie〉. It is generally 

assumed that Middle Dutch script 〈ie〉 was pronounced as monophthongal /iː/. In 

Table 3: Graphemic ambiguity in Middle Dutch. The words presented in this table are 
all part of the Corpus Van Reenen-Mulder, used in the syllabification experiment.

Phoneme Graphemes Syllabified examples

/y/ 〈u〉, 〈v〉 hun-dert, hvn-dert
ghe-des-tru-eert, ghe-des-trv-eert
u-we, v-we

/v/ 〈u〉, 〈v〉 o-uer, o-ver
ad-uo-ca-te, ad-vo-ca-te
he-mel-uaert, he-mel-vaert

/i/ 〈i〉, 〈ie〉, 〈j〉, 〈y〉, 〈ij〉 vi-an-de, vy-an-de
prjn-ci-pael, prin-ci-pael
pro-chi, pro-chie, pro-chij, pro-chy

/j/ 〈i〉, 〈j〉, 〈y〉 iaer-lecs, jaer-lecs
ionc-frou, jonc-frou
za-yen, za-ien

/uː/ 〈u〉, 〈uu〉, 〈v〉, 〈vv〉, 
〈w〉

hu-se, huu-se, hvv-se, hw-se
suut-si-de, swt-si-de
erf-hu-re, erf-hw-re

/w/ 〈uu〉, 〈vv〉, 〈w〉 on-be-duuon-ghen, on-be-dwon-
ghen
vve-gen, we-gen
op-uuart, op-waert
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thirteenth-century Flanders, however, one could argue that, when this cluster occurs 

at the outer-right edge of a word, 〈ie〉 was pronounced as bisyllabic /i.jə/ (van Loey 

1976). Partie (“part”), for instance, a word frequently used by Maerlant in his rhymed 

chronicle Spiegel Historiael (ca.1284–ca.1289) most likely had to be pronounced as 

/par.ti.jə/. This can be deduced from rhyme pairs such as partie : lije, where the 

grapheme 〈j〉 has the sound value of a consonant and thus marks a syllable boundary. 

In the same text, we also find rhyme combinations such as philosophie : lije, paertije : 

normendie, indicating that in Maerlant’s Spiegel Historiael the syllabified versions of 

these words should therefore be: (par)σ (ti)σ (e)σ, (li)σ (je)σ, (phi)σ (lo)σ (so)σ (phi)σ (e)σ, 

(nor)σ (men)σ (di)σ (e)σ. Since these words never form rhyme pairs with monosyllabic 

words like die, drie, zie or wie in Maerlant’s work, it reinforces our assumption of 〈ie〉 

as bisyllabic /i.jə/. It has been argued, however, that during the fourteenth century 

word-final bisyllabic 〈ie〉 evolved into a single syllable (van Loey 1976, p. 54–55, 

p. 60). Here as well, arguments can be formed on the basis of rhyme combinations. 

In the rhymed chronicle De Grimbergse oorlog (ca.1350), partie frequently rhymes 

with monosyllabic die, drie, sie, vrie, nie. Although this does not undisputedly 

prove that from the fourteenth century onwards all word-final graphemic clusters 

〈ie〉 in all dialect regions have to be considered as monosyllabic, there surely is a 

tendency towards this phonetic realization. Because of this, we follow the pragmatic 

convention to consider all word-final clusters 〈ie〉 to be monophthongal /iː/.

§8 Another noteworthy decision that was made has to do with clitic forms 

and contractions, which are syllabified according to their phonetic realizations. For 

example, sbisscops (des+bisscops) is syllabified as sbis-scops, like one would also 

syllabify the English possessive bishop’s as bi-shops. The same goes for enclitics such 

as gaedi (gaet+di) and sidi (sijt+ghi). Here, however, it becomes rather difficult to 

delineate the exact morpheme boundaries, since the grapheme 〈d〉 in both words is 

the result of an assimilation process. Because of this, we decided to place a syllable 

boundary in compliance to the Maximum Onset Principle: gae-di, si-di.

§9 Finally, the three major principles for syllabification (as outlined in section 

2) were adhered to when encountering words that contain a double consonant with 

the same sound value. For example, the modern-day Dutch word achttien (“eighteen”) 
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occurs in our corpus of Middle Dutch words in various spellings. When it is spelled as 

achtien with one 〈t〉, that consonant is added to the second syllable. Thus, respecting 

the Maximum Onset Principle, we syllabify ach-tien. In the case of the spelling 

achttien, a syllable boundary occurs between 〈tt〉. In compliance with the Sonority 

Ranking Hierarchy, we therefore syllabify words like achttien, ancker and avondde as 

acht-tien, anc-ker and a-vond-de.

4 Previous research by Bouma and Hermans
§10 A first system of automatic syllabification of Middle Dutch was developed 

by Bouma and Hermans (2012), whose approach comprises two stages: a finite-

state transducer and data-driven error correction. The first stage heavily relies on 

definitions of grapheme sequences that constitute possible nuclei and onsets in 

Middle Dutch (the groundwork of the final-state transducer used by Bouma and 

Hermans for Middle Dutch has been laid by Bouma in 2003). Superimposed onto 

these definitions, Bouma and Hermans included various rules that are meant to deal 

with Middle Dutch’s orthographic variation (as outlined in Table 3). An example of 

such a rule is the one that has to prevent 〈u〉 from being recognized as a vowel (/y/), 

when it is actually a consonant (/v/):

In the sequences 〈aue〉, 〈eue〉, and 〈oui〉, 〈u〉 almost always functions as 

a 〈v〉. Therefore, we replace such sequences with 〈aUe〉, 〈eUe〉, and 〈oUi〉, 

respectively, where we use 〈U〉 as the character that denotes a 〈u〉 functioning 

as a consonant (Bouma and Hermans 2012, p. 33).

Although the premise of this rule is legitimate, a significant risk is lurking: the 

prospect of being incomplete. And indeed, the above-mentioned rule disregards 

many other possible grapheme clusters. To name a few: 〈aui〉, 〈auo〉, 〈euo〉, 〈eui〉, 

〈eua〉, 〈oui〉 etc. are all environments where the character 〈u〉 can also function as a 

〈v〉.

§11 It is mainly because definitions and rules like the one above have been 

drafted without striving towards exhaustiveness that syllabification errors are still 

prevalent after completing the first stage of their experiment. An intermediate 
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evaluation of Bouma & Hermans’ rule-based system, carried out on a sample of 

20,139 Middle Dutch words, shows that 90.1% of words are correctly syllabified. The 

implication here is that nearly 10% needs to be corrected in the second stage, during 

manual error correction. The task of skimming through ca. 20,000 words that have 

been syllabified correctly in 90% of the cases, is one that puts a great deal of strain 

on an annotator. Upon inspection, 107 words were still incorrectly hyphenated (that 

is 0.53% out of the total number of 20,139 words) in Bouma and Hermans’ manually 

corrected word list.

§12 Finally, transformation-based learning, as developed for POS tagging by 

Brill (1995), was applied. Through this machine learning method, new rules were 

automatically deduced by comparing the output of the automatic finite-state 

transducer with the human-corrected word list. After implementing the highest 

scoring, new-found rules, Bouma and Hermans’ syllabification model yields a 

hyphenation accuracy score of 97.9% and a word accuracy of 96.5%.2

5 Experiment and results
§13 The Middle Dutch automatic syllabifier presented in this paper builds on 

the research carried out by Bouma and Hermans but moves away from manually 

specified rules: without explicitly hard-coding various rules, our model is able to apply 

syllabification rules and conventions solely from a supervised learning experience.

5.1 Data set
§14 Like Bouma and Hermans’ experiment, the data used as training material 

for our syllabification model stems from the Corpus Van Reenen-Mulder (CRM). This 

corpus, created by Van Reenen and Mulder (1993) at the Free University Amsterdam, 

contains approximately 2,700 charters, written in the Netherlands and Flanders 

between 1300 and 1400 (all charters are freely accessible in plain text format on the 

corpus page of Diachronie.nl, hosted by the Meertens Institute). Content-wise, most 

 2 The hyphenation accuracy is the percentage of correctly inserted hyphens in total, whereas word 

accuracy is the percentage of correctly hyphenated words. E.g. kerst-av-on-den has 2/3 hyphens 

placed correctly. The hyphenation accuracy is thus 66%. However, since the full word is syllabified 

incorrectly, word accuracy is 0%.

http://www.diachronie.nl/corpora/
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charters deal with administrative law, disputes or regulations that are made between 

two or more parties. The medieval charter can therefore best be compared with the 

contemporary notarial deed.

§15 The great benefit of working with the CRM lies in the widespread 

geographic distribution of the material. From the north of Holland to the south of 

Flanders, all major Middle Dutch dialectal varieties are represented. This geographic 

diversity thus guarantees linguistic diversity, which is especially useful when – in the 

end – we want our syllabifier to perform well across all variants of the Middle Dutch 

language.

§16 Compared to the CRM word list used by Bouma and Hermans, the word 

list in our experiment was modified in three ways. (1) First and foremost, whereas 

Bouma and Hermans used only 20,139 words, alphabetically ranging from a to 

kerstauonde, we expanded the word list so that it includes all 43,710 unique words 

from the CRM corpus.3 These words were all syllabified; i.e. hyphens were inserted 

in accordance with the guidelines outlined above. (2) Since the first half of our word 

list overlaps with the manually reviewed word list from in Bouma and Hermans’ 

experiment, we assumed that this part of the list was without errors. However, as 

already mentioned, syllabification errors were still prevalent. The second modification 

made to the data was therefore: correction. In total, 107 erroneous syllabifications 

were rectified (for some examples, see Table 4). Additionally, some inconsistent 

syllabifications were amended. For example, in their corrected word list, Bouma and 

Hermans sometimes syllabified the word ending 〈iaen〉 as (i)σ (aen)σ, yet at other 

times they left (iaen)σ as one syllable. Since we want a machine learning algorithm to 

learn from a list of syllabified words, this consistency is especially important. In total, 

95 words from Bouma and Hermans’ list were found to be inconsistently syllabified 

(for some examples, see Table 5). When manually reviewing the 43,710 syllabified 

words used in our experiment, we made sure that this consistency was continued 

throughout the entire data set. (3) Finally, several words were deleted from the list 

 3 Some tokens in the CRM contain diacritic symbols to indicate abbreviations, clitic forms, or unclear 

parts in the original charter. Striving towards orderliness, such tokens were excluded when collecting 

the data.
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when the orthography did not match the phonetic realization. Roman numerals 

and ordinals such as cccxc, lxxvij, xxiiiisten or xxvjsten do not require syllabification, 

since they are not pronounced according to their graphemic representations. 

Their pronunciations are respectively: driehonderdnegentig (“three hundred 

ninety”), zevenenzeventig (“seventy-seven”), vierentwintigste (“twenty-fourth”) and 

negenentwintigste (“twenty-ninth”).

Table 4: Examples of erroneous syllabifications present in the data used by Bouma 
and Hermans, along with their corrections. In total, 107 erroneous syllabifications 
were rectified.

Incorrect syllabification Correct syllabification English Translation

bau-in-cho-ue ba-uinc-ho-ue Bavikhove [town name]

be-r-ven ber-ven righteous

ceyn-su-ri ceyns-uri duty-free

dau-ijds da-uijds David’s

die-se-lue die-sel-ue the same

dwer-se-rue dwers-er-ue farmyard

erd-u-ast erd-uast attached to the land

ghe-uu-oen-te ghe-uuoen-te customary

hen-rixe hen-ri-xe Hendrik’s

iair-lixe iair-li-xe yearly

kers-au-on-de kers-a-uon-de Christmas Eve

Table 5: Examples of inconsistent syllabifications present in the data used by Bouma 
and Hermans, along with their corrections. In total, 95 inconsistencies were 
amended.

Inconsistent syllabification Improved consistency English Translation

a-po-stel a-pos-tel apostle

ap-pos-tel ap-pos-tel

fa-bi-ans fa-bi-ans Fabian’s

fa-biaens fa-bi-aens

straat-e straa-te street

stra-te stra-te

eerf-lic-heit eerf-lic-heit hereditary

erf-fe-lee-cheit erf-fe-leec-heit
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§17 In conclusion, the data used as training material for the syllabification 

experiment presented in this paper comprises 43,710 Middle Dutch syllabified 

words, alphabetically ranging from a to zy-wer-des (“sideways”). Statistics on the 

average length of words, the average number of syllables per word and the average 

number of characters per syllable are provided in Table 6. The entire data set is also 

made freely available for exploration and research purposes (Haverals 2018).

5.2 Model
§18 As an alternative to the rule-based methodology of Bouma and Hermans 

(2012), we employ a data-driven method, which is able to infer correct syllable 

boundaries solely from evidence. The evidence in this case is the human-reviewed list 

of 43,710 syllabified Middle Dutch words. Our model architecture is based on a fairly 

straightforward character-level Recurrent Neural Network (RNN) to produce syllable 

segmentations on the basis of the output of a stack of Long-Short Term Memory (LSTM) 

layers, as illustrated in Figure 3. The original paper on LSTM machine learning is by 

Hochreiter and Schmidhuber (1997). One of the great benefits of the LSTM-model 

lies in its capability to take into account the larger context: by letting information 

flow throughout the entire sequence model, the model learns not only from the 

immediately adjacent graphemes, but has the ability to also retain information about 

the entire sequence. This way, the model is especially efficient at learning about e.g. 

the maximal saturation of the onset of a syllable and morpheme boundaries.

Table 6: Statistics on the data, used as training material for the syllabification 
experiment. Total number of words = 43,710. Total number of syllables = 115,398.

Distribution of... characters 
per word 

syllables 
per word 

characters 
per syllable

Mean 8.05 2.64 3.05

Std 2.55 0.96 1.01

Min 1 1 1

25% 6 2 2

50% 8 3 3

75% 10 3 4

Max 27 9 9
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§19 For training the model, we split up the available data into three subsets: a 

training set, a development set and a test set. We applied stratification on the basis of 

the number of syllables per word, making sure that all splits contained a comparable 

per-word syllable distribution. The model is optimized on the training set, which 

represents 80% of all the data (34,968 words) and its performance is monitored (at 

the end of each epoch) on the development set, holding 10% (4,371 words) of the 

original data. We only store the model which minimizes the loss on the development 

set. Finally, the best model is evaluated on the test set, which takes up another 10% 

of the total amount of data.

§20 Each word in our model is presented to the model at the character-level, 

i.e. as a sequence of graphemes. As customary in this sort of models, we do not 

represent graphemes with a so-called one-hot encoding, but we use embeddings to 

represent each grapheme (with a fixed dimensionality of 64). Additionally, special 

symbols are appended to the beginning and end of each token (BOS and EOS). 

Finally, words get padded to a standard length (i.e. the size of the longest training 

token + 2, to accommodate for the BOS and EOS symbols) using a dedicated padding 

symbol (PAD). Naturally, the predictions for these dummy symbols were not included 

in the final evaluation. Characters that were not encountered in the training material 

receive a special encoding (UNK). The task of the model, then, is to predict either 

0 or 1 for each grapheme. When 0 is predicted there is no indication of a syllable 

k e r s t a u o n d e

0 0 0 0 0 1 1 0 0 1 0

Layers
(n=1, 2 or 3)

Input

Output

Figure 3: Model architecture of the LSTM machine learning algorithm, taking the 
word “kerstauonde” as input and predicting the output to be “kerst-a-uon-de”.
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boundary before this particular grapheme. The prediction of 1 means that a syllable 

boundary is detected right before this grapheme.

§21 All code for this paper is available from GitHub; the code uses Python 3.6+ 

and has the following major dependencies: NumPy (Oliphant 2006), SciKit Learn 

(Pedregosa et al. 2011), Keras (Chollet et al. 2015) and TensorFlow (Abadi et al. 2016).

5.3 Results
§22 When evaluating the model, we make a distinction between word accuracy 

and hyphenation accuracy. Word accuracy is the percentage of fully correct syllabified 

words, whereas hyphenation accuracy is the percentage of correctly inserted hyphens 

across all words and across all syllable boundaries. The latter can be calculated at 

the character-level. An illustration of both concepts is provided in the word list, 

shown in Table 7. Word accuracy in this fictitious example is fairly low at 60% since 

only 3/5 words are correctly syllabified. With 9 out of 11 hyphens placed correctly, 

hyphenation accuracy is at 82%.

§23 The results presented in Table 8 and 9 are obtained after a training 

regime of 30 epochs, with a batch size of 50 words. We used the cross-entropy loss in 

Table 7: Exemplary words list with predictions and correct syllabifications. This list 
serves as an example for the purpose of explaining the difference between word 
and hyphenation accuracy. Examples are not actual predictions made by the model.

Prediction Correct Word Hyphens

smou-te-nee-ren smou-te-nee-ren ✓ 3/3

wa-ter-loes-weru-en wa-ter-loes-wer-uen ✗ 3/4

aen-slaen aen-slaen ✓ 1/1

arm arm ✓ 0/0

cos-te-liken cos-te-li-ken ✗ 2/3

Table 8: Word accuracy (epochs = 30, dropout = 0.25, embedding dimension = 64).

Test score 1 layer 2 layers 3 layers

Dev score

64 dimensions 95.61% 95.08% 96.84% 96.59% 97.16% 96.96%

128 dimensions 95.70% 95.29% 97.19% 97.46% 96.87% 96.71%

256 dimensions 96.57% 96.00% 97.55% 97.52% 97.19% 97.52%

https://github.com/WHaverals/syllabify
http://www.numpy.org/
http://scikit-learn.org/stable/
http://keras.io/
https://www.tensorflow.org/
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combination with the Adam optimizer (Kingma and Ba 2014), with an initial learning 

rate of 0.001. This learning rate was reduced by a factor of 0.3 after each epoch if the 

validation loss did not decrease. The model was trained under different conditions, 

during which we varied the number of hidden layers (1 up to 3) and the number of 

dimensions (64 up to 256). We insert a moderate level of so-called dropout (p = .25) 

after the embedding layer, between the recurrent layers, and before the final dense 

layer (Srivastava et al. 2014). The key idea here is that by randomly dropping units 

(along with their connections) during training, overfitting can be prevented.

5.4 Model inspection
§24 The best results are obtained with the two-layered model combined with 

256 dimensions. Under these circumstances, our model yields a word accuracy of 

97.55% (Table 8) and a hyphenation accuracy of 99.50% (Table 9) on the test set. 

Overall, scores improve most when stepping up from a 1-layered to a 2-layered 

model. When adding a third layer, some minor improvements are also noticeable, 

but overall scores appear to have already stabilized in the 2-layered model. As to the 

number of dimensions, the difference of scores between 64 and 256 dimensions 

never exceeds an improvement of 1.00% on the word level and 0.20% on the 

hyphenation level.

§25 We compared the output of our best LSTM-model with the output of 

Bouma and Hermans’ rule-based model (both on the same test set of 4,371 words). 

From this comparison, we gained the results shown in Table 10: on the level of 

word accuracy, the LSTM-model (97.55%) outperforms Bouma and Hermans’ model 

(91.33%) by 6.25%. On the hyphenation accuracy-level, the improvement is more 

subtle with an increase of 1.53% over the rule-based model.

Table 9: Hyphenation accuracy (epochs = 30, dropout = 0.25, embedding 
dimension = 64).

Test score 1 layer 2 layers 3 layers

Dev score

64 dimensions 99.19% 99.07% 99.38% 99.31% 99.44% 99.40%

128 dimensions 99.24% 99.16% 99.47% 99.47% 99.37% 99.32%

256 dimensions 99.34% 99.22% 99.50% 99.48% 99.46% 99.46%
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§26 Additionally, both the Levenshtein distance and F1-score were calculated 

for the above-mentioned best model. The Levenshtein distance is a useful metric, 

often applied in spell checking algorithms, for measuring the amount of difference 

between two sequences (Levenshtein 1966). Briefly put, the logic behind this metric 

is defined by the number of edits that are required to convert one string into the 

other.4 In our case, we apply the Levenshtein distance in order to compare the correct, 

gold standard syllabifications to the predictions made by our model. As one can see 

in Table 10, the Levenshtein distance of our model is very low with an average of 

.04 edits, which is more than three times as low as the distance calculated for Bouma 

and Hermans’ model (.17). With the F1-score, finally, we wanted to gain insight in 

the balance between precision and recall on the character level, because there is a 

significant imbalance for the two classification labels in our model. Here also, the 

score obtained for the LSTM-model is nearing the perfect score of 1.0.

§27 Surely, developing an automatic syllabifier is only really interesting if it can 

also be effectively deployed onto other corpora. In order to get a good understanding 

of the syllabifier’s potential, we evaluated our model on an out-of-corpus sample 

of Middle Dutch words. To this end, we randomly selected 2,000 words from the 

Cd-rom Middelnederlands (1998). Unlike the legal and administrative character of the 

Corpus Van Reenen-Mulder, the Cd-rom Middelnederlands is a corpus of literary texts, 

both rhymed and prose. In order to make sure that our evaluation was carried out 

 4 As a clarifying example for the Levenshtein distance, consider the following two syllabifications: 

af-ter-wards and aft-er-ward-s. The Levenshtein distance here is 3, since it would require three edits in 

order to transform one sequence into the other (twice the deletion and once the insertion of a “-”).

Table 10: Comparison of results between Bouma and Hermans’ rule-based model 
and the LSTM-model on the test set (n of words = 4,371).

Bouma & Hermans 
(2012)

Our model

Word accuracy 91.33% 97.55%

Hyphen accuracy 97.99% 99.50%

Levenshtein distance .17 .04

F1-score .95 .99
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on new, unseen words to the model, we cross-checked the sample from the Cd-rom 

Middelnederlands with the CRM-word list. In total, we found that 1,748 out of the 

2,000 words did not occur in the CRM, and thus were unseen to the model. From 

those 1,748 words, only 22 (1.26%) were syllabified incorrectly by the LSTM-model, 

whereas Bouma and Hermans’ model made 188 mistakes (10.75%) (Table 11). Also 

on the level of hyphenation accuracy, the LSTM-model achieves a remarkable result 

of 99.76%.

§28 The observation that our model’s performance is even better on a random 

sample of unseen words is likely due to the fact that word frequency was not taken 

into account when training the model. Because the LSTM-model was trained on all 

the words from the CRM-corpus (i.e. it has no knowledge of which words are more 

common and which ones are more rare), mistakes are most likely made against low-

frequent words. The scores shown in Table 10 can therefore be an underestimation 

of the model’s performance “in the wild”.

5.5 Model criticism
§29 Where does it still go wrong? From an inspection of the mistakes made by 

both our LSTM-model and Bouma and Hermans’ model, we learn the following 

(Table 12): (1) the LSTM-model is very accurate at respecting morpheme boundaries. 

We notice this especially from adjectives ending in -heit and adverbs ending in -like. 

In almost all cases, such words are syllabified correctly by the LSTM-model, which 

rightly treats the suffixes of these words as independent domains of syllabification 

(e.g. domp-li-ke, ern-stic-heyt, rijp-heyt, siec-he-de, etc.). In syllabifications produced 

by Bouma and Hermans’ model, we notice that the final letter of the stem sometimes 

gets added to a morpheme that it does not belong to (e.g. dom-pli-ke, ern-sti-cheyt, 

rij-pheyt, sie-che-de, etc.). Also prefixes like and-, ver- and on- are kept intact by the 

Table 11: Comparison of results between Bouma and Hermans’ rule-based model 
and the LSTM-model on an out-of-corpus sample of 1,748 Middle Dutch words.

Bouma & Hermans 
(2012) 

Our model

Word accuracy 89.24% 98.74%

Hyphen accuracy 97.64% 99.76%
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LSTM-model, (e.g. and-wer-de, on-uer-hoe-len, ver-uairt). (2) The latter examples also 

show that the LSTM-model is highly efficient at discerning whether the grapheme 〈u〉 

has to be pronounced as either /y/ or /v/, which was one of the challenges raised in 

section 3. (3) However, the LSTM sometimes also lapses. This is the case with words 

Table 12: Examples of syllabification errors made by both Bouma and Hermans’ rule-
based model and the LSTM-model. Color code: white cells are correctly syllabified 
words; grey cells are syllabification errors.

Correct syllabification Bouma and Hermans (2012) Our system

aert-se-bis-cop aert-se-bi-scop aert-se-bi-scop

and-war-de an-dwar-de and-war-de

bae-re-uoet bae-reu-oet bae-re-uoet

be-ruer-ten be-ruer-ten ber-uer-ten

bloeit bloe-it bloeit

con-uen-tu-a-le co-nuen-tu-a-le con-uen-tu-a-le

cri-eer-den cri-eer-den crieer-den

des-tru-e-ren de-strue-ren des-true-ren

domp-li-ke dom-pli-ke domp-li-ke

dy-o-cle-ti-aen dy-o-cle-tiaen dy-o-cle-ti-aen

ern-stic-heyt ern-sti-cheyt ern-stic-heyt

ghe-en-det gheen-det gheen-det

ko-ninck-ri-ken ko-ninc-kri-ken ko-ninc-kri-ken

moey-te moe-y-te moey-te

on-uer-hoe-len o-nuer-hoe-len on-uer-hoe-len

recht-ueer-dic-heit rech-tue-er-di-cheit rech-t-ueer-dic-heit

rijp-heyt rij-pheyt rijp-heyt

sach-ic sa-chic sa-chic

siec-he-de sie-che-de siec-he-de

twij-uel twi-juel twij-uel

vet-heit ve-theit vet-heit

ver-uairt ve-ru-airt ver-uairt

vray-lijc vra-y-lijc vray-lijc

vreemt-he-de vreem-the-de vreem-the-de

waeyt wae-yt waeyt

wraec w-raec wraec

wrac-ghier w-rac-ghier wrac-ghier

zot-hei-de zo-thei-de zot-hei-de
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that have a syllable boundary between two vowels, like crieerden, destrueren and 

gheendet. It is not surprising that things go wrong here. The LSTM-model has seen 

more instances where the graphemes 〈ee〉 and 〈ue〉 remain together, than where they 

are separated. Although it does syllabify crieerden correctly, Bouma and Hermans’ 

model also frequently makes mistakes against words that contain syllable boundaries 

between vowels. Overall, it is important to note that where the LSTM goes wrong, so 

does Bouma and Hermans’ model. Out of the 26 word-level mistakes made by the 

LSTM-model on the entire out-of-corpus sample, 20 of those mistakes are also made 

by Bouma and Hermans’ model. The reverse, however, is not true. Where Bouma and 

Hermans’ model goes wrong, the LSTM usually has it right.

6 Conclusion
§30 Essentially, there are two approaches to the task of automatic syllabification: 

rule-based and data-driven. An automatic syllabifier for Middle Dutch was first 

developed by Bouma and Hermans (2012), whose approach fundamentally is a 

rule-based one. The way they approach the task is very elegant and the scores 

they achieve are high. Nevertheless, one could argue that specifically for Middle 

Dutch, their model is not a very robust one. By heavily relying on a set of rules 

that describe possible nuclei, onsets and codas, their model underestimates the 

somewhat erratic nature of Middle Dutch orthography. Because the spelling of 

Middle Dutch allows a lot of variation both in diachronic and synchronic terms, 

it is risky business to hard-code this information. The automatic syllabifier 

presented in this paper responds to the need of not having to explicitly describe 

any definitions, and thus guaranteeing more flexibility when it comes to spelling 

variation. By resorting to a purely data-driven method, our model is extremely 

effective at predicting syllable boundaries while respecting morpheme boundaries. 

Using LSTM machine learning techniques, we obtain high results at the word level: 

97.55% on the test set of the training material corpus, and 98.74% on an out-

of-corpus sample. The results of the automatic syllabifier for Middle Dutch are 

therefore in line with comparative research on different syllabification methods, 

finding data-driven methods to outperform rule-based techniques usually by huge 

margins Marchand et al. (2009).
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§31 As Bouma and Hermans (2012) have established in their article, an 

automatic syllabifier for Middle Dutch can serve a great deal of interesting research 

questions. In the domain of historical linguistics, for example, the possibility 

to syllabify an entire corpus of Middle Dutch text allows the researcher to trace 

both spelling conventions and phonological change. At the same time, accurately 

syllabifying Middle Dutch words can be of interest to the literary scholar. As shown 

by Hench (2017) for Middle High German, syllabification is essential for gaining 

insight in the soundscapes of medieval poetry. Finally, syllabification is an essential 

stepping stone in metrical studies. Before one can determine the rhythmical aspects 

of e.g. rhymed medieval poetry, precise and consistent syllabification is mandatory.
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